HW 4: Big-O of Recursive Functions
Solution
You can find the solution here
Overview
This is a written homework assignment. It is due in class, in hard-copy.
Due Date
This homework is due Wednesday, September 13th in class
Grading
The assignment is graded out of 100 points. Each question is worth 10 points.
Submission and Starter Code
Submission must occur in hard copy at the start of class.
Problems
For each of the program-snippets below, write the recurrence relations. You don't need to find the Big-0.
class Node { int data; Node next; } int football(Node first) { return football(first, 1); } int football(Node cur, int x) { if (cur == null) { System.out.println("Pinker Cake"); return x; } x += football(cur.next, x); x += football(cur.next, x); return x; }
class Node { int data; Node next; } int college(Node cur){ if (cur.next == null) { return 10; } return college(cur.next); }
void usna(int[] arr) { usna(arr, arr.length); } void usna(int[] arr, int end) { if (end == 0) { return; }else{ for (int i = 0; i < end; i++) System.out.println("Go Navy!"); usna(arr, end-1); } }
void usma(int[] arr) { usma(arr, arr.length); } void usma(int[] arr, int end) { if (end == 0) { return; }else{ for (int i = 0; i < end*end; i++) System.out.println("Beat Army!"); usma(arr, end-1); } }
void airforce(int[] arr) { airforce(arr, 0, arr.length); } void airforce(int[] arr, int beg, int end) { if ((end-beg) == 1) { System.out.println("Crash Air Force!"); return; } else { int mid = (end+beg)/2; airforce(arr, beg, mid); airforce(arr, mid, end); } }
Find the Big-O of the following recurrence relations. Show your work. It might be helpful to try them on certain smallish values of n just to make sure you are right.
- \(T(n) = \begin{cases} 10,& n\le 2 \\ 4 + T(n-1),& n \ge 3 \end{cases}\)
- \(T(n) = \begin{cases} 3,& n\le 1\\ 1 + 2 T(n/2),& n\ge 2 \end{cases}\)
- \(T(n) = \begin{cases} 1,& n\le 1\\ n + 2T(n/2),& n\ge 2 \end{cases}\)
- \(T(n) = \begin{cases} 3,& n\le 1\\ 1 + 2 T(n-1),& n\ge 2 \end{cases}\)
- \(T(n) = \begin{cases} 1,& n\le 2\\ 1 + nT(n-1),& n\gt 2 \end{cases}\)
Useful stuff to know
Arithmetic Sum
\[ \sum_{i=1}^{n} i = n(n+1)/2 \]
Geometric Sums
\[ \sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r} \]