
IC221: Systems Programming

12-Week Written Exam

[SOLUTIONS]

April 2, 2015

Answer the questions in the spaces provided on the question sheets. If you run out of room
for an answer, continue on the back of the page. Show all work, but please be legible.
Microscopic writing will not be graded.

You are allowed a single crib sheet for this exam on one-side of an 8.5”x11”
sheet of paper, hand written. You must turn in your crib sheet with your
exam.

Name:

Section:

Alpha:

Question Points Score

1 20

2 20

3 20

4 20

5 20

Total: 100

IC221 12-Week Written Exam April 2, 2015

1. (a) [4 points] Consider the execution of the following commands, what is the output of jobs?
(HINT: the argument - for cat says to read from standard input)

#> head -c 10 /dev/urandom > rand
#> sleep 200 &
#> cat - rand &
#> sleep 100
^Z
#> bg
#> jobs

[1] Running sleep 200

[2] Stopped cat

[3] Running sleep 100

[+2 for stopped and cat, +2 for running sleep]

(b) [2 points] Based on the above commands, what shell command will bring sleep 200 to the fore-
ground?

fg 1 or fg %1

[+2 for fg; +1 for indicating job number]

(c) [3 points] What happens to a background process when it attempts to read from standard input?
Why does this happen for standard input but not for standard output?

The process is sent a signal to stop. Only the foreground process can read from standard

input, all process can write to standard output

[+2 for stopped, +1 for explanation, -1 for “blocked” instead of “stopped” there is a
technical difference]

(d) [2 points] For how many seconds does the following pipeline run for? Explain.

sleep 5 | sleep 6 | sleep 7 | cat /proc/cpuinfo | grep processor

7 seconds because all run in parallel
[+1 for 7 seconds, +1 for parallel]

(e) [3 points] Using the following pipeline of commands and their pid (indicated in italics above each
command), what is the pgid of each process in the pipeline? Why?

1994 1995 1996 1997
sleep 20 | sleep 30 | sleep 40 | sleep 50

The pgid is 1994, the pid of the first process in the pipeline.
[+2 for 1994, +1 for explain]

(f) [2 points] For the pipeline from the previous question, will all the processes terminate when a
Ctrl-C is used? Why or why not?

Yes. The terminal signal is sent to the foreground process group.
[+1 for yes, +1 for explain]

(g) [4 points] For each of the MARKs in the program to the left, what is the most likely process state?

int main (){
if(fork() == 0){

while (1); // MARK 1
}else{

wait(NULL); // MARK 2
}

}

Running at Mark 1, busy loop, and Blocked and Waiting at Mark
2, wait is a blocking system call.
[+2 for mark 1 with explanation, +2 for mark 2 with
explanation]

Page 2 of 8

IC221 12-Week Written Exam April 2, 2015

2. Consider the following program

int ticks =0;
void handler(int signum){

if (++ ticks > 5){
raise (9); // <- MARK 1

}

alarm (1); // <- MARK 2
}

int main (){

// MARK 3
signal(SIGALRM , handler);

alarm (1);

// MARK 4
while (1){

pause ();
printf("tick tock: %d\n", ticks);

}
}

(a) [3 points] At MARK 3, what is the purpose of the
call to signal() with respect to future deliveries of
SIGALRM from the O.S.?

Registers a signal handler with the O.S., handler is
called whenever a SIGALRM is delivered.
[+2 Handler is called when SIGALRM is de-
livered, +1 register with OS (not SIGALRM
being called, that’s the signal)]

(b) [4 points] What is the result of the system call at
MARK 1? What is the name of the signal being raised?

Sends the current process the designated signal,
SIGKILL whose number value is 9 [+2 raise de-
scription, +2 SIGKILL, -1 if not describing
signal being sent]

(c) [3 points] How many times does tick tock print? Explain.

5 times because 5 SIGALRMs are delivered before the raise [+2 5 SIGALRMs, +1 for explanation]

(d) [3 points] If the code at MARK 2 were replaced by the following code, how long would it be (in
seconds) until next SIGALRM is delivered? Explain.

alarm (1); // <- MARK 2
alarm (2);
alarm (3);
alarm (2);

2 seconds because calls to alarm() reset prior calls [+2 for 2 sec-
onds, +1 for explanation]

(e) [4 points] Consider replacing the code at MARK 4 with the following below. What is the output of
the program if the user does not enter a phrase within 1 second? Explain.

// MARK 4
char phrase[BUF_LEN];
printf("Enter Phrase :\n");
if (scanf("%s",phrase) < 1){

fprintf("ERROR: scanf\n");
exit (1);

}

while (1){
pause ();
printf("%s: %d\n",

phrase , ticks);
}

The program will print ERROR ... and exit because the scanf()
was interrupted by the system call [+2 for error, +2 for ex-
planation]

(f) [3 points] To fix the program, the code at MARK 3 was replaced with the following:

\\MARK 3
struct sigaction sa;
sa.sa_handler=handler;
sa.sa_flags = SA_RESTART;
sigaction(SIGALRM , &sa , NULL);

Explain how this correction fixes the program.

The flag SA RESTART will restart the read system call, avoiding the error. [+2 SA RESTART, +1
for restarting system call, -1 does not describe “system call” being restarted]

Page 3 of 8

IC221 12-Week Written Exam April 2, 2015

3.

int main (){
int cpid;

int value = 20;

cpid = fork ();
if(cpid == 0){
// Child

value = 30;
return 0;

}else{
// Parent

printf("Value :%d",
value);

}

return 0;
}

(a) [3 points] For the program to the left, what is the output? Explain.

Value: 20
Value is duplicated but not shared between parent and child [+1 for
value, +2 for explanation (should mention no sharing or vari-
ables are duplicated, no credit for describing a race condi-
tion)]

(b) [2 points] Why does fork() return twice?

Returns onece in child and one in parent.
[+2 for explain, +1 for each return value]

(c) [2 points] What values are returned for each of the returns?

Returns 0 in child, and process id of child in parent.
¡¡¡¡¡¡¡ HEAD [+1 for each return value — FULL CREDIT DUE
TO AMBIGUITY] ======= [+1 for each return value (+1
for say 20 and 30 due to ambiguity in wording, no credit for
0)] ¿¿¿¿¿¿¿ 41373e741320db51e3956276cd537648feae54ba

(d) [2 points] For the program to the right, how many total processes
(including the initial processes) result from execution? Explain.

Returns 4. Initial parent forks twice, one child forks onces, totaling 4.
[+1 for value, +1 for explanation (only -1 for 5 instead of 4)]

(e) [2 points] If the for loop in the program to the right were changed
to i < 4, how many total process (including the initial process) result
from execution? Explain.

16, the number of processes doubles in each loop, 24 = 16
[+1 for value, +1 for explanation (only -1 for 17 instead of
16)]

int main (){
int i;
for(i=0;i<2;i++){

fork ();
}

while (1);
}

Page 4 of 8

IC221 12-Week Written Exam April 2, 2015

int main (){
int i,status;

char * sleep[] = {"sleep",
"1",
NULL};

for(i=0;i<2;i++){

if(fork() == 0){
// child

execvp(sleep[0],sleep);
perror("execvp");

}

}

// parent

wait(& status);

sleep (2); // sleep for 2 seconds

return 0;
}

(f) [3 points] For the program to the left, how long does the
program run for? Explain.

3 seconds; 1 second for the wait() and 2 seconds for the
sleep. [+2 for answer, +1 for explanation (-2 for 4
seconds)]

(g) [3 points] What is a zombie process? Does the program
to the left result in any zombie processes? Explain.

Zombie is a process that has terminated but the parent has
not waited on it. Yes, this process results in 1 zombie be-
cause two forks and 1 wait. [+2 for answer zombie ex-
plain, +1 for yes]

(h) [3 points] What is an orphan process and who “inherits”
orphan processes? Does the program to the left produce
any orphan processes? Explain.

Orphan is a process whose parent has terminated first. They
are inheritted by the init. Yes. The program does produces
a orphan zombie process. [+1 for orphan, +1 for init,
and +1 for yes, zombie orphan]

Page 5 of 8

IC221 12-Week Written Exam April 2, 2015

4.

int main(int argc , char * argv []){

int src ,dest;

// MARK 1
src = open(argv[1],

O_RDONLY);

if (src < 0){
fprintf(stderr , "ERROR: open src");

}

// MARK 2
dest = open(argv[2],

O_WRONLY| O_TRUNC | O_CREAT ,
0666);

if(dest < 0){
fprintf(stderr , "ERROR: open dest");

}

int n;
char buf[BUF_SIZE];
while((n = read(src , buf , BUF_SIZE)){

write(dest ,buf ,n);
}

close(src);
close(dest);

}

(a) [3 points] What does the program to the left do
with regard to its command line arguments argv[1]
and argv[2]?

It will copy the file specified as argv[1] to a new file
argv[2]
[+3 for copy, -1 describes program mostly but
doesn’t say copies]

(b) [4 points] For the open() at MARK 1 and MARK 2

what does each of the option flags mean?

O RDONLY: read only; O WRONLY: write only;
O TRUNC: truncate; O CREAT: create the file
[+1 for each]

(c) [4 points] At MARK 2, how are the option flags com-
bined? That is, what is the specific operation used
and how is it encoded? Give a small example.

Combined using bitwise OR or ORing. Encode in
each bit, e.g., 1000 — 0100 produce 1100
[+1 for each, -2 doesn’t include ORing (or
bitwise OR) but does describe process gener-
ally]

(d) [3 points] If the umask is set to 0037, what will the permission mode for the newly created file be?
Show work or explain.

0640 = 0666& ∼ 0037
[+2 for right answer, +1 for work, -1 for 0740 if didn’t notice 0666 in program]

(e) [2 points] What is the purpose of the umask with respect to the security of newly created files?

Ensures that newly created files are not over provisioned with permissions.
[+2 for right answer]

(f) [4 points] Consider again the call to open() at MARK 2, write the equivalent fopen() line of code
to match the options. What is the return type?

fopen(argv[2], “w”); return type is FILE *
[+3 for fopen(), +1 for FILE *, -1 for including permission settings, e.g., 0666]

Page 6 of 8

IC221 12-Week Written Exam April 2, 2015

5. Consider the program

int main (){

int fd;
int pfd [2];
pid_t cpid;

char * cat[] = {"cat",
NULL};

fd = open("input.txt",
RD_ONLY);

// MARK 1
close (0);
dup2(fd ,0);

pipe(pfd);

cpid = fork ();
if(!cpid){

// child

// MARK 2
close(pfd [0]);
close (1);
dup2(pfd[1],1)

execvp(cat[0],cat);

}else{
// parent

// MARK 3
close(pfd [1]);

int n;
char buf[BUF_SIZE];
while((n = read(pfd[0],

buf ,
BUF_SIZE)){

write(1,buf ,n);
}

close(pfd [1]);

}
}

(a) [3 points] What does the dup2() system call do? Use
the code at MARK 1 in your explanation.

dup2() duplicates a file descriptor onto another. Here
the input.txt file is duplicated onto standard input.
[+2 for dup2, +1 for code example]

(b) [3 points] A pipe is an array of file descriptor, which
index is the read end and which is the write end?

pfd[0] is read end and pd[1] is write
[+1 for one, +3 for both]

(c) [4 points] At MARK 2 and MARK 3 one end of the pipe
is closed. What is this called? Why are alternate ends
of the pipe closed in the parent and child?

widowing the pipe. Alternate because close the end
not being used.
[+2 for right answer]

(d) [4 points] From what file or standard file descrip-
tor (e.g. stdin, stdout, stderr) does this program
read? And, to what file or standard file descriptor does
this program write? Explain.

Reads from input.txt writes to stdout.txt and piped
through cat [+1 for read, +1 for write, +2 for
explain]

Page 7 of 8

IC221 12-Week Written Exam April 2, 2015

(e) [2 points] For the program to the right, why is it the case
that at MARK 3 the while loop will break?

Will read 0 bytes or EOF from the pipe. [+2 for read 0
— FULL CREDIT DUE TO ERROR]

(f) [2 points] Consider MARK 1: what happens to the child if
the kernel buffer for the pipe is less than 4096 bytes in size?

The child will block until any data is read from the pipe.
[+2 for block]

(g) [2 points] Consider removing the wait() in the parent at
MARK 2: What happens to the parent if it reads from the
pipe before the child has written anything?

The parent will block until data has been written to the pipe.
[+2 for block — FULL CREDIT DUE TO ERROR
IN QUESTION]

int main (){
int i;
int pfd [2];
char c;

pipe(pfd);
if(fork() == 0){// child

close(pfd [0]);

//MARK 1
for(i=0;i <4096;i++){

write(pdf[1],’A’,1);
}
close(pfd [1]);
exit (1);

}else{ // parent

//MARK 2
wait(NULL);

//MARK 3
while(read(pfd[1],&c,1)){

write(1,&c,1);
}

}

Page 8 of 8

