
IC221: Systems Programming

12-Week Practicum

2 Apr 2015

Instructions:

• This is a 1 hour practicum.

• The practicum is open notes, open book, and open internet. Previous lab submissions count as notes.
You may not, however, communicate with anyone directly, e.g., via instant message, stack overflow,
or etc.

• There are four practicum problems.

• All problems are graded pass/fail. No partial credit.

• To retrieve the source, run ∼aviv/bin/ic221-up, then
cd ∼/ic221/practicum/12-week

• All code submissions will occur via the ∼aviv/bin/ic221-submit with the option
practicum/12-week. You can submit multiple times, only your final submission will be
graded.

• You must also turn in this document at the completion of the examination. Feel free to include any
notes or comments in writing within this document.

• You can test your submission by running the test script test.sh

Name:

Alpha:

IC221 12-Week Practicum 2 Apr 2015

1. This problem refers to the starter code in the makefile directory. Your task is to complete
the makefile such that the program echoshell properly compiles by just typing make.

Note that the echoshell requires the readline library, so be sure to include the library in
your last step of compilation.

clang -lreadline _________________ -o echoshell

where underscores are replaced with the right object files. You can determine the dependencies
for the compilation by observing the header files includes in the sources files.

2. This problem refers to the starter code in the open directory. Your task is to complete the
read account.c program which given an account file specified on the command line, will parse
and print out the account information. For example:

aviv@saddleback: open $./ read_account aviv.acc

Adam Aviv 1101012010304204

bal:$1020399 .20 cred:$500 .19 deb:$30276 .87

aviv@saddleback: open $./ read_account pepin.acc

Joni Pepin 11010120528374119

bal:$412877 .41 cred:$609 .31 deb:$79.01

aviv@saddleback: open $./ read_account aviv.acc pepin.acc

Adam Aviv 1101012010304204

bal:$1020399 .20 cred:$500 .19 deb:$30276 .87

Joni Pepin 11010120528374119

bal:$412877 .41 cred:$609 .31 deb:$79.01

The accounts is stored in the structure account t and was written to the files using the following
write() statement.

write(fd ,&acc ,sizeof(account_t));

Your must open the files and read the account information back to structure.

Page 2 of ??

IC221 12-Week Practicum 2 Apr 2015

3. This problem refers to the starter code in the pipes directory. Your task is to complete the
reversing.c program which will reverse input on stdin line-by-line. For example:

aviv@saddleback: pipes $ cat HelloWorld.txt

Hello

World

aviv@saddleback: pipes $ cat HelloWorld.txt | ./ reversing

World

Hello

aviv@saddleback: pipes $ cat GoNavyBeatArmy.txt

Go

Navy

Beat

Army

aviv@saddleback: pipes $ cat GoNavyBeatArmy.txt | ./ reversing

Army

Beat

Navy

Go

This is accomplished with pipes to a forked child process executing tac. The pipes used are
described below:

int parent_to_child [2]; // pipe from the parent to child

int child_to_parent [2]; // pipe from child to parent

pipe(parent_to_child);

pipe(child_to_parent);

Data from the parent’s standard input will be written to the pipe to the child (which executes
tac), and the output of the child will be written to the pipe to the parent (which is the output
of tac). Finally, the parent will print out anything read from the child back to stdout.

Your primary task is to properly set up the pipes using calls to close() and dup2(). Don’t
forget to widow!

4. This problem refers to the starter code in the signals directory. Your task is to properly signal
signal-me program and decrypt its output by completing the get-secret program. First the
signal-me program will respond with a secret, encrypted message if it receives the right signal.
First, you must determine which signal will result in the secreted, encrypted message.

Next, once you’ve determine the right signal, an encrypted message in raw bytes will be printed
to the terminal. You must decrypt that message by flipping all the bits. To flip the bits of a
byte, we use the XOR function, for example:

unsigned char c;

// ...

c = c ^ 0xff ; // flip bits!

will flips the bits of c from 1’s to 0’s and 0’s to 1’s. get-secret will read one byte at time
from stdin, flip the bits, and write the decrypted byte to stdout to reveal the secret message.

To receive credit, save the secret message in a file called secret like so when signal-me is
properly signaled:

./signal -me | ./get -secret > secret

Page 3 of ??

