
IC221: Systems Programming

12-Week Written Exam

April 2, 2015

Answer the questions in the spaces provided on the question sheets. If you run out of room
for an answer, continue on the back of the page. Show all work, but please be legible.
Microscopic writing will not be graded.

You are allowed a single crib sheet for this exam on one-side of an 8.5”x11”
sheet of paper, hand written. You must turn in your crib sheet with your
exam.

Name:

Section:

Alpha:

Question Points Score

1 20

2 20

3 20

4 20

5 20

Total: 100

IC221 12-Week Written Exam April 2, 2015

1. (a) [4 points] Consider the execution of the following commands, what is the output of jobs?
(HINT: the argument - for cat says to read from standard input)

#> head -c 10 /dev/urandom > rand
#> sleep 200 &
#> cat - rand &
#> sleep 100
^Z
#> bg
#> jobs

[1] Running sleep 200

(b) [2 points] Based on the above commands, what shell command will bring sleep 200 to the fore-
ground?

(c) [3 points] What happens to a background process when it attempts to read from standard input?
Why does this happen for standard input but not for standard output?

(d) [2 points] For how many seconds does the following pipeline run for? Explain.

sleep 5 | sleep 6 | sleep 7 | cat /proc/cpuinfo | grep processor

(e) [3 points] Using the following pipeline of commands and their pid (indicated in italics above each
command), what is the pgid of each process in the pipeline? Why?

1994 1995 1996 1997
sleep 20 | sleep 30 | sleep 40 | sleep 50

(f) [2 points] For the pipeline from the previous question, will all the processes terminate when a
Ctrl-C is used? Why or why not?

(g) [4 points] For each of the MARKs in the program to the left, what is the most likely process state?

int main (){
if(fork() == 0){

while (1); // MARK 1
}else{

wait(NULL); // MARK 2
}

}

Page 2 of 6

IC221 12-Week Written Exam April 2, 2015

2. Consider the following program

int ticks =0;
void handler(int signum){

if (++ ticks > 5){
raise (9); // <- MARK 1

}

alarm (1); // <- MARK 2
}

int main (){

// MARK 3
signal(SIGALRM , handler);

alarm (1);

// MARK 4
while (1){

pause ();
printf("tick tock: %d\n", ticks);

}
}

(a) [3 points] At MARK 3, what is the purpose of the
call to signal() with respect to future deliveries of
SIGALRM from the O.S.?

(b) [4 points] What is the result of the system call at
MARK 1? What is the name of the signal being raised?

(c) [3 points] How many times does tick tock print? Explain.

(d) [3 points] If the code at MARK 2 were replaced by the following code, how long would it be (in
seconds) until next SIGALRM is delivered? Explain.

alarm (1); // <- MARK 2
alarm (2);
alarm (3);
alarm (2);

(e) [4 points] Consider replacing the code at MARK 4 with the following below. What is the output of
the program if the user does not enter a phrase within 1 second? Explain.

// MARK 4
char phrase[BUF_LEN];
printf("Enter Phrase :\n");
if (scanf("%s",phrase) < 1){

fprintf("ERROR: scanf\n");
exit (1);

}

while (1){
pause ();
printf("%s: %d\n",

phrase , ticks);
}

(f) [3 points] To fix the program, the code at MARK 3 was replaced with the following:

\\MARK 3
struct sigaction sa;
sa.sa_handler=handler;
sa.sa_flags = SA_RESTART;
sigaction(SIGALRM , &sa , NULL);

Explain how this correction fixes the program.

Page 3 of 6

IC221 12-Week Written Exam April 2, 2015

3.

int main (){
int cpid;

int value = 20;

cpid = fork ();
if(cpid == 0){
// Child

value = 30;
return 0;

}else{
// Parent

printf("Value :%d",
value);

}

return 0;
}

(a) [3 points] For the program to the left, what is the output? Explain.

(b) [2 points] Why does fork() return twice?

(c) [2 points] What values are returned for each of the returns?

(d) [2 points] For the program to the right, how many total processes
(including the initial processes) result from execution? Explain.

(e) [2 points] If the for loop in the program to the right were changed
to i < 4, how many total process (including the initial process) result
from execution? Explain.

int main (){
int i;
for(i=0;i<2;i++){

fork ();
}

while (1);
}

int main (){
int i,status;

char * sleep[] = {"sleep",
"1",
NULL};

for(i=0;i<2;i++){

if(fork() == 0){
// child

execvp(sleep[0],sleep);
perror("execvp");

}

}

// parent

wait(& status);

sleep (2); // sleep for 2 seconds

return 0;
}

(f) [3 points] For the program to the left, how long does the
program run for? Explain.

(g) [3 points] What is a zombie process? Does the program
to the left result in any zombie processes? Explain.

(h) [3 points] What is an orphan process and who “inherits”
orphan processes? Does the program to the left produce
any orphan processes? Explain.

Page 4 of 6

IC221 12-Week Written Exam April 2, 2015

4.

int main(int argc , char * argv []){

int src ,dest;

// MARK 1
src = open(argv[1],

O_RDONLY);

if (src < 0){
fprintf(stderr , "ERROR: open src");

}

// MARK 2
dest = open(argv[2],

O_WRONLY| O_TRUNC | O_CREAT ,
0666);

if(dest < 0){
fprintf(stderr , "ERROR: open dest");

}

int n;
char buf[BUF_SIZE];
while((n = read(src , buf , BUF_SIZE)){

write(dest ,buf ,n);
}

close(src);
close(dest);

}

(a) [3 points] What does the program to the left do
with regard to its command line arguments argv[1]
and argv[2]?

(b) [4 points] For the open() at MARK 1 and MARK 2

what does each of the option flags mean?

(c) [4 points] At MARK 2, how are the option flags com-
bined? That is, what is the specific operation used
and how is it encoded? Give a small example.

(d) [3 points] If the umask is set to 0037, what will the permission mode for the newly created file be?
Show work or explain.

(e) [2 points] What is the purpose of the umask with respect to the security of newly created files?

(f) [4 points] Consider again the call to open() at MARK 2, write the equivalent fopen() line of code
to match the options. What is the return type?

Page 5 of 6

IC221 12-Week Written Exam April 2, 2015

5. Consider the program

int main (){

int fd;
int pfd [2];
pid_t cpid;

char * cat[] = {"cat",
NULL};

fd = open("input.txt",
RD_ONLY);

// MARK 1
close (0);
dup2(fd ,0);

pipe(pfd);

cpid = fork ();
if(!cpid){

// child

// MARK 2
close(pfd [0]);
close (1);
dup2(pfd[1],1)

execvp(cat[0],cat);

}else{
// parent

// MARK 3
close(pfd [1]);

int n;
char buf[BUF_SIZE];
while((n = read(pfd[0],

buf ,
BUF_SIZE)){

write(1,buf ,n);
}

close(pfd [1]);

}
}

(a) [3 points] What does the dup2() system call do? Use
the code at MARK 1 in your explanation.

(b) [3 points] A pipe is an array of file descriptor, which
index is the read end and which is the write end?

(c) [4 points] At MARK 2 and MARK 3 one end of the pipe
is closed. What is this called? Why are alternate ends
of the pipe closed in the parent and child?

(d) [4 points] From what file or standard file descrip-
tor (e.g. stdin, stdout, stderr) does this program
read? And, to what file or standard file descriptor does
this program write? Explain.

(e) [2 points] For the program to the right, why is it the case
that at MARK 3 the while loop will break?

(f) [2 points] Consider MARK 1: what happens to the child if
the kernel buffer for the pipe is less than 4096 bytes in size?

(g) [2 points] Consider removing the wait() in the parent at
MARK 2: What happens to the parent if it reads from the
pipe before the child has written anything?

int main (){
int i;
int pfd [2];
char c;

pipe(pfd);
if(fork() == 0){// child

close(pfd [0]);

//MARK 1
for(i=0;i <4096;i++){

write(pdf[1],’A’,1);
}
close(pfd [1]);
exit (1);

}else{ // parent

//MARK 2
wait(NULL);

//MARK 3
while(read(pfd[1],&c,1)){

write(1,&c,1);
}

}

Page 6 of 6

