
IC221: Systems Programming

12-Week Written Exam

April 2, 2014

Answer the questions in the spaces provided on the question sheets. If you run out of room
for an answer, continue on the back of the page. Show all work, but please be legible.
Microscopic writing will not be graded.

You are allowed a single crib sheet for this exam on an 8.5”x11” sheet of
paper, hand written. You must turn in your crib sheet with your exam.

Name:

Section:

Alpha:

Question Points Score

1 15

2 15

3 15

4 15

5 15

Total: 75

IC221 12-Week Written Exam April 2, 2014

1. Consider the following program:

int main (){
int i, status;

for(i=0;i<3;i++){
if(fork() == 0){
/* child */
printf("Child: %d: Hello World!", i);
_Exit (0);

}else{
/* parent */
printf("Parent: %d: Hello World!\n",i);

}
}

wait(& status);
if(WIFSIGNALED(status)){

printf("Process signaled\n");
}
return 0;

}

(a) [4 points] To the right of the program, complete the drawing of the process tree above,
where each dot represents a process and a fork results in a split, up for the parent and down for the
child. Below answer: How many total processes are created, including the initial parent process?
How many total processes are running after the loop? Explain.

(b) [4 points] How many times does “Child: ...” print and how many times does
“Parent: ...” print to standard output? Explain.

(c) [3 points] Does the message “Process signaled” print? Why or why not based on the value of
status?

(d) [4 points] At the end of the program, are there any zombie processes? If so, why are there
zombies and what happens to them when the parent terminates? If not, why aren’t there any
zombie processes?

Page 2 of 6

IC221 12-Week Written Exam April 2, 2014

2. (a) [3 points] Consider the execution of the following commands, what is the output of jobs?

#> sleep 200 &
#> head -c 10 /dev/urandom > rand
#> cat &
#> sleep 10
^Z
#> bg

[1] Running sleep 200 &

(b) [3 points] Based on the above commands, what shell command will bring sleep 200 to the fore-
ground?

(c) [3 points] For how many seconds does the following pipeline run for? Explain.

sleep 1000 | cat /proc/cpuinfo | grep processor | sleep 10

(d) [3 points] Using the following pipeline of commands and their pid (indicated in italics above each
command), what is the pgid of each process in the pipeline? Will all processes terminate after a
Ctrl-C? Why or why not?

1994 1995 1996 1997
sleep 20 | sleep 30 | sleep 40 | sleep 50

(e) [3 points] At the mark, what process state would the parent process be in, Ready and Waiting,
Ready and Running, Blocked and Waiting? Explain.

int main (){
if(fork() == 0){

while (1);
}else{

wait(NULL); // MARK
}

}

Page 3 of 6

IC221 12-Week Written Exam April 2, 2014

3.

(a) [3 points] In the program to the right, two pipes are
opened before fork() how is it that the child also has
access to them to communicate with the parent?

(b) [4 points] In the program to the right, which system call
will complete first, MARK 2 in the child or MARK 5 in the
parent? Explain.

int main(int argc , char * argv []){

char str1[] = " Go Navy! ";
char str2[] = " Beat Army! ";
char buffer [1024];
int pfd1[2], pfd2[2], n;

pipe(pfd1); pipe(pfd2);

if(fork() == 0){ /* Child */

//MARK 1
close(pfd1 [0]);
close(pfd2 [1]);

//MARK 2
write(pfd1[1], str1 , strlen(str1));

//MARK 3
n = read(pfd2[0], buffer , 1024);
write(1, buffer , n);

}else{ /* Parent */

//MARK 4
close(pfd1 [1]);
close(pfd2 [0]);

//MARK 5
n = read(pfd1[0], buffer , 1024);
write(1, buffer , n);

//MARK 6
write(pfd2[1], str2 , strlen(str2));

wait(NULL);
}

return 0;
}

(c) [4 points] In the above program, what is MARK 1 and MARK 4 doing to the pipe? Why are the
operations mirrored in parent and child?

(d) [4 points] Consider the following change in the program at MARK 2 where str1 is written con-
tinually to the pipe in a loop. Will the child ever reach MARK 3? If yes, why, and if no, why
not?

//MARK 2
while (1){
write(pfd[1], str1 , strlen(str1));

}

Page 4 of 6

IC221 12-Week Written Exam April 2, 2014

4. Consider the following program

int main (){
int fd1 = open("file1.txt", O_RDONLY);
int fd2 = open("file2.txt", O_WRONLY | O_CREAT , 0640);
pid_t cpid;
char c;

while (1){
if((cpid = fork ()) == 0){

/* Child */

close (1);
dup2(fd2 ,1);

if(read(fd1 , &c, 1) > 0){ // read 1 byte from file
write(1, &c, 1); // write 1 byte to stdout

}
_exit (0); // exit hard

}else{
/* Parent */
wait(NULL); // wait for child to exit

if(read(fd1 , &c, 1) <= 0){// read 1 byte from file
break; // exit on EOF or read fail

}else{
write(1, &c, 1);// otherwise write 1 byte to stdout

}
}

}

return 0;
}

(a) [4 points] Complete the figure of the Process Table and Open File Table entries for the above
program, drawing arrows for references and including new file descriptor table entries. You only
need to complete one of the children since they are all the same.

(b) [4 points] If file1.txt contained the phrase “Go Navy! Beat Army!”, where “ ” indicates a
space, what is written to standard output and what is written to file2.txt? Explain.

(c) [4 points] If file1.txt was linked in the v-node/i-node structure like below, would the function-
ality of the program change if file1.txt were replaced by file3.txt? Explain, and what kind of
link is this?

(d) [3 points] In which node, v-node or i-node, is device specific information stored for reading and
writing the file from/to the device?

Page 5 of 6

IC221 12-Week Written Exam April 2, 2014

5. Consider the following program

int ticks =0;
void handler(int signum){

ticks ++;
printf ("tick tock: %d\n", ticks);

if(ticks < 10){
alarm (1);

}else{
raise (9); //<-- MARK 1

}
}

int main (){

signal(SIGALRM , handler); //<-- MARK 2
alarm (1);

//MARK 3
while (1){

pause (); //<-- MARK 3
}

}

(a) [3 points] At MARK 2, what is the purpose of the call to signal() with respect to future deliveries
of SIGALRM from the O.S.?

(b) [4 points] What is the result of the system call at MARK 1? What is the name of the signal being
raised?

(c) [4 points] How many SIGALRM signals are delivered to the program? Explain.

(d) [4 points] What is the purpose of pause() at MARK 3? Is it better or worse then replacing it with
the following code without pause()?

//MARK 3

while(1);

Page 6 of 6

