
IC221 System Programming
Spring 2016 NAME:__________________________
HW10

COLLABORATOR(S):__________________________	
	

1	 of	 4	

1. What is a process group and how does it relate to a job in the
shell?

2. How long will the following shell command run for? And why?

sleep 10 | sleep 20 | sleep 100 | sleep 30 | sleep 1

3. Explain the difference between sequential and parallel execution
of a command line?

4. For the following set of shell commands draw the process
groupings at the last command execution.

 #> cat | cat | cat > output &
 #> sleep 20 | sleep 30 &
 #> ps

	

	

	

	

bash 	

5/3/1/0

5/3/1/0

5/3/1/0

10/8/5/3/0

__/25

NAME: __________________________	

2	 of	 4	

5. For each of the system calls associated with process groupings,
match them to their description.

6. For each system call, briefly describe the resulting action:

getpgid(0)

setpgid(0,0)

setpgid(0,pgid)

setpgid(pid, 0)

7. Consider the following code snippet, what is the output and why?

setpgrp() _____

setpgid() _____

getpgrp() _____

getpgid() _____

(a) Returns the process group id of
the calling process

(b) Sets the process group id of the
calling process to its pid

(c) Returns the process group of a

process identified by a pid

(d) Sets the process group of the
process identified by pid to a
specified pgid

	

	

	

	

int main(){
 pid_t cpid;
 cpid = fork();
 setpgrp();
 if(cpid == 0){
 if(getpid() == getpgrp()){
 printf("C: SAME PGID\n");
 }
 _exit(0);
 }else if(cpid > 0){
 if(getpgid(cpid) == cpid){
 printf("P: SAME PGID\n");
 }
 wait();
 _exit(0);
 }
 exit(1); //fork failed
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5/3/1/0

5/3/1/0

10/8/5/1/0

__/20

NAME: __________________________	

3	 of	 4	

8. Consider the following code snippet. If we were to run this
program in a terminal, will it be properly terminated by Ctrl-c? If
so, why? If not, why not?

9. Consider the following code snippet with the open file fight.txt
containing the text _Go_Navy!_Beat_Army! where _ indicates a space.
What is the output of this program, and why?

10. The pipe() system call sets the value of two file descriptors in
an array: what is index 0 used for and what is index 1 used for?

11. What does it mean to “widow” a pipe? Why must the write end
typically be widowed?

	
	
	
	
	
	
	
	
	
	
	
	

int main(){
 pid_t cpid;
 cpid = fork();
 if(cpid == 0){
 setpgrp();
 while(1);
 }else if(cpid > 0){
 wait(NULL);
 _exit(0);
 }
 _exit(1); //fork failed
}

int main(){
 pid_t cpid;
 int fd = open("fight.txt",O_RDONLY);
 char buf[1024];

 cpid = fork();
 if(cpid == 0){
 read(fd, buf, 10);
 _exit(0);

 }else if(cpid > 0){
 wait(NULL); /* wait for child*/

 read(fd,buf, 10);
 write(1, buf, 10);
 _exit(0);
 }
 _exit(1); //fork failed
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

10/8/5/3/0

10/8/5/3/0

__/30

5/3/1/0

	

5/3/1/0

NAME: __________________________	

4	 of	 4	

12. What is the default action when a process writes to a pipe more
data than the kernel buffer can hold? Can this action be changed?

13. If the open file fight.txt containing the text
_Go_Navy!_Beat_Army! where _ indicates a space. What is the output
to stdout and what is the output to output.txt, and why?

	

int main(){
int fd_in = open("fight.txt",
 O_RDONLY);

 int fd_out = open("output.txt",
 O_WRONLY | O_TRUNC | O_CREAT,
 0755);
 char buf[1024];

 close(0);
 dup2(fd_in,0);

 close(1);
 dup2(fd_out,1);

 while(scanf("%s",buf) != EOF){
 printf("%s\n",buf);
 }
 return 0;
}

	
	
	
	
	
	
	
	
	
	
	
	
	

5/3/1/0

10/8/5/3/0

10/8/5/3/1/0 int main(){
 pid_t cpid;
 int pfd[2], n
 char gonavy[] = "Go Navy!";
 char buffer[1024];

 pipe(pfd);

 cpid = fork();
 if(cpid == 0){

 write(1, gonavy,strlen(gonavy));
 }else if(cpid > 0){

 n = read(0, buffer, 1024);
 write(1,buffer,n);
 }
 _exit(1); //fork failed
}

14. Add the necessary code using dup2() and close() such that the
child’s write to stdout will be read by the parent through stdin.

__/25

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

