
IC221 System Programming
Spring 2016 NAME:__________________________
HW8

COLLABORATOR(S):__________________________
	

1	of	4	

1. What is the difference between _exit() and exit() and _Exit()?

2. When a process returns from main() which of three different
exit calls is actually used? What is the exit value?

3. In the diagram below, place a circle along the exit path
for the following program:

4. Match each of the IO buffering settings to their mode
options in setvbuf():

_IONBF _____ a) unbuffered

_IOFBF _____ b) line buffered

_IOLBF _____ c) fully buffered

5. What is the difference between line buffered and fully
buffered?

5/3/1/0	

void fun(){
 _exit(1);
}

int main(){
 exit(0);
 fun();
}

5/3/1/0	

10/8/4/0	

5/3/1/0	

5/3/1/0	

___/30	

NAME: __________________________	

2	of	4	

6. Consider the following programs, what are their output?
And, explain.

7. Why does the following code snippet properly check for a
failed call to execv()?

8. Consider setting up an argv array to be passed to execv()
for the execution of following command: ls –l –a /bin /usr/bin
Fill in the argv decleration:

int main(){
 fprintf(stdout, "Hello World!");
 return 0;
}

int main(){
 fprintf(stdout, "Hello World!");
 exit(0);
}

int main(){
 fprintf(stdout, "Hello World!");
 _Exit(0);
}

int main(){
 fprintf(stderr, "Hello World!");
 _exit(0);
}

int main(){
 char * ls_args[2] = { "/bin/ls", NULL} ;

 execv(ls_args[0], ls_args);
 perror("execve failed");

 _exit(1); //failure
}

char * argv[] = { }

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

___/30	

NAME: __________________________	

3	of	4	

9. The fork() system call is the only function that returns
twice when succesful. Explain this phenominom?

10. The typdefined type of a process identifier, or pid, is
pid_t. What real type is a pid_t?

11. What system call is used to determine the current pid of a
process? What system call is used to determine the parrent’s
process id of the calling process?

12. In the following small program, which program’s pid would
typical be the parent for the output? Explain.
Assume the program is run from the shell like: ./print_ppid

13. The wait() system call waits for the status change of a
child process: What is a typical status change that you could
wait on?

14. Open the manual for wait(), match the status macro to its
description:

WIFEXITED(status) ____

WIFEXITSTATUS(status) ____

WIFSIGNALED(status) ____

(a) Returns true if the child
process was terminated by a signal

(b) Returns true if the child
terminated normally

(c) Retrieves the exit staus of
the child.

int main(){

 printf("Parent pid: %d\n",
 getppid());

}

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

___/30	

NAME: __________________________	

4	of	4	

15. Assume you were writing a program that checked if a file
existed by using ls. (This is a silly way to do this, but just
for the sake of argument)

Recall that ls returns an exit status of 2 when the file does
not exist and it cannot list it, and ls returns an exit status
of 0 when the file does exist and can be listed.

Complete the wait() portion of the program below. The output
should be EXISTS! if the file specified in argv[1] exists and
DOES NOT EXIST! If the file specified in argv[1] does not
exist. (hint: actually try and complete the program on your
computer)

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>
#include <sys/types.h>

int main(int argc, char * argv[]){

 pid_t cid;
 char * ls_args[] = {"ls", NULL, NULL};

 if(argc == 2){
 ls_args[1] = argv[1];
 }

 cid = fork();
 if(cid == 0){ /*child*/
 execvp(ls_args[0],ls_args);
 exit(1); /*error*/
 }
 /*parent*/
 int status;
 wait(&status);

}

10/8/6/3/0	

___/10	

