
IC221: Systems Programming

12-Week Practicum

April 4, 2014

Instructions:

• This is a 1 hour and 50 minute practicum.

• The practicum is open notes, open book, and open internet. Previous lab submissions count as notes.
You may not, however, communicate with anyone directly, e.g., via intstant message.

• Complete all the programs as described in this document and in the source code provided.

• To retrieve the source, run ∼aviv/bin/ic221-up, then
cd ∼/ic221/practicum/12-week

• All code submissions will occur via the ∼aviv/bin/ic221-submit with the option
practicum/12-week. You can submit multiple times, only your final submission will be
graded. DO NOT FORGET TO SUBMIT.

• WRITE YOUR NAME AND ALPHA IN THE README FILE where you can also include
any notes or comments.

• You must also turn in this document at the completion of the examination. Feel free to include any
notes or comments in writing within this document.

• You can test your submission by running the test script test.sh from the
∼/ic221/practicum/12-week directory. The test script will report pass or fail for each
grading unit.

Name:

Section:

Alpha:

Question Points Score

1 5

2 10

3 10

Total: 25



IC221 12-Week Practicum April 4, 2014

1. [5 points] Change into the ic221/practicum/12-week/prob1 directory, where you will find
the following files:

• mathlib.h : Header file for mathlib

• mathlib.c : Source file for mathlib

• rpn.c : Source code for the RPN calculator

• Makefile : A makefile

Your goal is to complete the Makefile to properly compile the RPN calculator program, rpn,
from the source rpn.c

For reference: an RPN calculator, which stands for Reverse Polish Notation is a post-fix calcu-
lator. As opposed to in-fix calculators where the operator appears between the operands, like
the + operator between the operands in 1 + 1, in post-fix calculators, the operator appears
after the operands, like 1 1 +. Here is a sample run of the calculator you should expect after
compilation:

#> ./rpn

(Ctrl -D to EXIT))

RPN > 1 1 +

0: 2

(Ctrl -D to EXIT))

RPN > 1 2 *

0: 2

(Ctrl -D to EXIT))

RPN > 3 !

0: 6

(Ctrl -D to EXIT))

RPN > 6 2 /

0: 3

(Ctrl -D to EXIT))

RPN > 4 5 -

0: -1

Your Makefile must compile all source files to object files first (ending in .o) and then assemble
object files into a single executable, rpn. Additionally, you must have a clean target that will
remove any object files or executables, but not source or header files. The following targets
must apear:

• rpn : target for assembling the executable from object files

• rpn.o : target for compiling the rpn.c file to an object file

• mathlib.o : target for compiling the mathlib.c file to an object file

• clean : target for cleaning the directory of object files and executables.

Note that the rpn program also requires the readline library which must be indicated during
final assembly of the rpn executable with the flag -lreadline.

For this problem, you may not use the make constructs CC or CFLAGS nor may you rely on the
default compilation settings. All compilation steps must be explicitly provided for each target.

Page 2 of 4



IC221 12-Week Practicum April 4, 2014

2. [10 points] Change into the ic221/practicum/12-week/prob2 directory, where you will find
the following files:

• grandchild.c : Source file for grandchild program, which you will complete

• Makefile : A Makefile to compile grandchild.c

• *.txt : test files

Your goal is to complete grandchild.c so that the pipeline properly functions. As an overview,
refer to the following diagram:

The program will fork twice: first the Parent will fork Child 1 who will then fork Child 2. The
parent of Child 2 is Child 1, so Child 2 is the grandchild of the Parent process.

There are also two pipes, pfd 1 and pfd 2. The write end of pfd 1 should be duplicated onto
the standard output of the Parent, while the remaining ends of both pipes are used without
duplication.

The Parent will eventually exec the cat program which will make use of the duplicated pipe,
pfd 1.

The expected result is that data will flow through the Parent’s standard input and written to
pfd 1 (via cat). Data is then read from pfd 1 and written to pfd 2 in Child 1. Finally, data
is read from pfd 2 and written to standard output in Child 2.

You must add all the calls to pipe(), dup() and close() to complete the program, and your
program must properly handle EOF (end-of-file). HINT: Don’t forget to widow all unused end
of the pipes.

Here is some sample output:

#> ./ grandchildren < GoNavy.txt

Beat Army!

#> ./ grandchildren < BeatArmy.txt

Go Navy!

#> cat GoNavy.txt | ./ grandchildren

Beat Army!

#> ./ grandchildren

Hello

Hello

^D

#>

Page 3 of 4



IC221 12-Week Practicum April 4, 2014

3. [10 points] Change into the ic221/practicum/12-week/prob3 directory, where you will find
the following files:

• ping.c : Source file for signal pinger

• pong.c : Source file for signal ponger, which you will complete

• Makefile : Source file for mathlib

Your goal is to complete the pong.c program such that it will properly interact with the ping

program. The ping program will choose a random signal number, excluding SIGKILL, SIGSTOP
and SIGCHLD, and send that signal to its parent and await the same signal to be sent in reply.
You can view this interaction and control flow of pong and ping like so:

When ping sends the signal, it prints “ping [signum]” where “[signum]” is replaced by the signal
number. The pong program should print “pong [signum]” upon receiving the signal before
sending it back to ping. Finally, when ping receives the signal, it prints “ACK [signum]”.

Here are some sample runs of pong to compare against, note that a random signal number is
chosen for each run, so your output may differ slightly from mine.

#> ./pong

ping 31

pong 31

ACK 31

#> ./pong

ping 6

pong 6

ACK 6

#> ./pong

ping 13

pong 13

ACK 13

#> ./pong

ping 13

pong 13

ACK 13

DO NOT run the ping program directly. It will most likely terminate your shell. You should
only run the pong program.

Page 4 of 4


