IC221 System Programming
Spring 2015 NAME:

HW16
COLLABORATOR(S) :

THIS IS AN OPTIONAL HOMEWORK TO REPLACE A PREVIOUS HOMEWORK GRADE

1. Explain why the following code snippet is not atomic?

y/3/1/0
balance = balance + 1
3/5/3/0 2. In the following code snippet what is the expected output of the
program? Is the expected output consistent across multiple runs of
the program? Explain?
int shared;

void *x fun(void % args){
int 1i;
for(i=0;i<100; i++){

int

5/3/1/0

__/18

return NULL;
main(){
pthread_t t1,t2;

pthread_create(&t1l, NULL, fun, NULL);
pthread_create(&t2, NULL, fun, NULL);

pthread_join(t1l, NULL);
pthread_join(t2, NULL);

printf('"shared: %d\n", shared);_

shared++;

3. In the above code snippet circle the critical section. Below,
explain describe a critical section.

1 of 4



NAME :

4. Consider the naive locking solution used for the thread startup
routine from the previous program: Does this provide proper locking?
Why or why not, explain.

5/3/1/0

int shared;
int lock;
void * fun(void * args){
int 1i;
for(i=0;1i<100;i++){
while(lock > 0);//spin
lock = 1; //set lock

shared++; //increment

lock = @; //unlock
}

return NULL;

3/3/1/0 5. Explain why using a mutex avoids issues of a lack of atomicity in
lock acquisition?

/5/3/0 6. Which type of locking strategy, pthread_mutext_t lock;
coarse or fine, does the following int avail = MAX_FUNDS;
code block use? Is there a int local_1 = 0;
possibility of a more efficient int local_2 = 0;

locking strategy? Explain. VOid.* fun(void * args){
int v,1;

for(i=0; i < 100; i++){
v = random() % 100;

pthread_mutext_lock(&lock);
if(avail - v > 0){

avail -= v;
}

if(random() % 2){
local_1 += v;
Yelse{
local_2 += v;
+

pthread_mutext_unlock(&lock);

¥
return NULL;

—/17 2 of 4



NAME :

10/8/6/3/0
7. Based on the code example from Question 6,

to provide a more efficient locking strategy.

fill in locking code

X_FUNDS;
int local 1 Q;
int local 2 Q;
void *x fun(void * args){

int v,1i;

int avail = MA

for(i=0; i < 100; i++){
v = random() % 100;

if(avail - v > 0){
avail -= v;

}

if(random() % 2){
local_1 += v;

Yelse{

local_2 += v;

b
return NULL;

5/3/1/0 8. what is deadlock and provide a small (pseudo-)code example
of how deadlock can arrise from coarse grain locking.

5/3/1/0 9. Provide an example of deadlock avoidance when there is a natural
ordering of lockable objects.

—/20 3 0f 4



NAME :

L0/8/6/3/0 10. pProvide a detailed description of the problem setup for the
dining philosophers problem:

25/23/20/15/10/5/0

11. In pseudo code, provie a solution to the dining philosophers
problem that avoids deadlock:

l0/8/6/3/0 12. Explain your solution and argue that it wll always avoid
deadlocks regardless of the number of philosophers.

—/45 4of 4



