
IC221 System Programming
Spring 2015 NAME:__________________________
HW15

COLLABORATOR(S):__________________________
	

1	 of	 4	

1. Match the following socket system calls to their description:

2. Explain why when accepting an incoming connection a new
socket is created?

3. Explain the second argument to listen(), the backlog.

4. Below is an output of the hello_server program from the course
notes, can you explain the change in ports from client to server?

8/6/3/0

	

socket() ___

bind() ___

accept() ___

listen() ___

connect() ___

close() ___

(a) A client routine to pair a socket to
a remote host.

(b) A routine to associate the socket
with a given local address

(c) Clean up a socket after all
operations are complete

(d) Create a new socket

(e) Specify the socket as willing to
accept incoming connections

(f) Create a new socket for an incoming
connection for futher communication

	

#> ./hello_server
Listening On: 127.0.0.1:1845
Connection From: 127.0.0.1:42555
Read from client: hello
Sending: Hello 127.0.0.1:42555
Go Navy! Beat Army
Closing socket

	

5/3/1/0

5/3/1/0

7/5/3/1/0

___/25

NAME: __________________________	 NAME: __________________________	

2	 of	 4	

5. Consider the code loop for handling client sockets: Can this
program handle multiple clients simultaneously? That is, if multiple
clients are connected, will the server be able to services all
sockets when data is available? Explain.

6. What does a select() procedure do? And, how does select()
and multi-threading avoid the problem above?

7. Match the programing unit to its description.

	

char buf[BUF_SIZE];
int sockets[NUMSOCKS], i,n;

//iterate over all open sockets
for(i=0;i < NUMSOCKS; i++){
 if(i>0){
 //read from socket
 n = read(sockets[i], buf, BUF_SIZE);

 //socket closed
 if(n<0){
 close(sockets[i]);
 sockets[i] = -1;
 }

 //echo back
 write(sockets[i], buf, n);
 }
}

	

 FD_ZERO() ____

select() ____

fd_set ____

FD_ISSET() ____

FD_SET() ____

FD_CLR() ____

(a) Check if a file descriptor in the fd_set
is actionable, e.g., can be read/write from.

(b) Type for storing select information for a
set of file descriptors

(c) Set a file descriptor to be tested as
actionable by select()

(d) Given a set of file descriptors, test if
any are actionable

(e) Remove a file descriptor from the testing
set

(f) Completely clear the set of file
descriptors

8/6/3/1/0

7/5/3/0

5/3/1/0

___/20

NAME: __________________________	 NAME: __________________________	

3	 of	 4	

8. For each of the statements, indicate if the statement is True or
False. You must provide an additional brief statement in support of
your selection:

(a) Threads are created just like processes by calling fork()

except instead of checking the return value of fork() a
specified function is executed.

(b) Threads are scheduled just like other processes because POSIX
threads are treated like individual process by the OS.

(c) Like multiple processes, threads provide resource isolation.
Two threads from the same program do not share memory or other
resources.

9. What are the equivalent thread commands for system call
fork() and wait()?

10. Match the identifier to its description:

TRUE / FALSE

TRUE / FALSE

TRUE / FALSE

	

 tid ____

 pid ____

pid_t ____

pthread_t ____

syscall (SYS_gettid); ____

getpid() ____

pthread_self() ____

(a) Retrieve the POSIX thread identifier
for the calling thread

(b) The process identifier, shared by all
threads of a multi-threaded program

(c) Retrieve the Unix OS thread

identifier of the calling thread

(d) Retrieve the Unix OS process
identifier of the calling process

(e) The type of a POSIX thread identifier

(f) The type of the Unix OS thread

identifier

(g) The thread identifier, unique to each
thread and equal to the pid for the
main thread

5/3/1/0

5/3/1/0

5/3/1/0

5/3/1/0

10/8/6/3/0

___/30

NAME: __________________________	 NAME: __________________________	

4	 of	 4	

11. Fill in the following program that prints the first command line
argument from the thread. For each line of code you add, provide a
brief comment describing the purpose/function:

12. Answer the following questions about the program to the left,
assume the program was run on the lab machines:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * foo(void * args){
 pthread_t thread;

 if(args == NULL){
 pthread_create(&thread, NULL,
 foo, (void *) 1);
 }

 while(1);
}

int main(int argc, char * argv[]){
 pthread_t threads[4];
 int i;

 for(i=0;i<4;i++){
 pthread_create(&threads[i], NULL,
 foo, NULL);
 }

 while(1);
}

(a) Based on the code, what are the two
possible values for the argument to foo()?

(b) When you run this program, how many
threads are running. Use ps –L to count:

(c) According to top what percent CPU does
the program consume? Is this more or less
than you expect? Explain.

	

	

	

void * startup(void * args){
 char * str; //varible to reference string to print

 printf();
 return NULL;
}

int main(int argc, char * argv[]){

 pthread_t thread; //POSIX thread identifier

 //create a thread to run startup with argument argv[1]
 pthread_create(&thread, NULL, startup, argv[1]);

 return 0;
}

5/3/1/0

5/3/1/0

5/3/1/0

10/8/6/3/0

___/25

