5/3/1/0

5/3/1/0

IC221 System Programming
Spring 2015

HW5

1.

NAME :

COLLABORATOR(S)

and describe it to the right.

}

int * makearray(int size) {

int arrayl[sizel;

int j;

for (j=0;j<size;j++) {
array[j] = j*2;

return array;

int main(int argc, char * argvl[]) {
int * al = makearray(10);
int * a2 = makearray(10);

}

2.

int j, sum=0;

for (3=0;3<10; j++) {
sumt+=al[j]+a2[7]
}

printf ("sum: %d\n", sum);

For the above program, 5/3/1/0

.rewrite the makearray ()
function such that it does not
have a memory violation

Identify the memory violation in the following program. Circle it

3. Explain how your corrected
version of makearray() does not
have the same memory violations.

5/3/1/0 4. When a function returns, why are the local stack variables de-
allocated?

5/3/1/0 ¢

Why is there a need to have both a stack and a heap?

/25

1 of 4

NAME :

5/3/1/0 6. Draw and label the program
memory layout to the right.
Indicate which direction the
stack and heap grows.

5/3/1/0 7. What kind of memory
typically exists between the
stack and the heap?

10/8/4/ g. For the code segment below draw the stack model, of pushes and
2/0 pops of function frames, through the end of execution, i.e., main()
being popped off the stack.

push main | __main |
int times (int a, int b) {
return a*b;
push minusone | add | }
| __main |
int add(int a, int b) {
return a+b;
}
int sub (int a, int b) {
return a-b;
}
int main () {
int 1 = times(add(1,2),5)
sub (i,6);
}
/20

2 of4

NAME :

5/3/1/0 9. Using malloc() write the command to allocate an array of 16 long
values:

long * larray = malloc ()i

10. Using calloc() write the command to allocate the same array of
16 long values:

long * larray = calloc()i

5/3/1/0 11. What are the two differences between malloc() and calloc() with
respect to array allocations?

15/13/10 12. Consider the following code sample for dynamically allocating an
/5/0 array of mytype t structures. Fill in the function deallocate such
that there are no memory leaks:

typdef struct/{

int * a; //array of ints
int size; //of this size
} mytype t;

mytype t * allocate(int n) {

int i;

mytype t * mytypes = calloc(n,sizeof (mytype t*));

for (i=0;i<n;i++) {
mytypes[i]->a = calloc(i+l,sizeof (int));
mytypes[i]->size = i+1;

}

return mytpes;

}

void deallocate (mytype t * mytypes, int n) {

5/3/1/0 13. Explain your
deallocate function above
and why you free()’ed

what you did

/30 3ol 4

NAME :

5/3/1/0 14. Explain why this is a legal cast between pointer types:

int a = 10;
char * p = (char *) &a;

5/3/1/015. Continuing with the snippet code above, what does p[2] reference
with respect to the integer a.

5/3/1/016. Consider the code snippet below that prints the bytes of the
integer a in hexadecimal, what is the output?

unsigned int a = Oxcafebabe;
unsigned char * p = (char *) &a;
int 1i;

printf ("0x");
for (1=0;1i<4;i++) {
printf ("%02x",p[i]);
}
printf ("\n")

5/3/1/0 17. wWhat is the difference between Big and Little Endian? Use the
above program output as part of your explanation.

5/3/1/0 18. Which endian representation does most computers use? How can you
tell from the sample program?

_/25
4 of 4

