
IC221 System Programming
Spring 2015 NAME:__________________________
HW5

COLLABORATOR(S):__________________________
	

1	
 of	
 4	

1. Identify the memory violation in the following program. Circle it
and describe it to the right.

.

4. When a function returns, why are the local stack variables de-
allocated?

5. Why is there a need to have both a stack and a heap?

5/3/1/0	

int * makearray(int size){
 int array[size];
 int j;
 for(j=0;j<size;j++){
 array[j] = j*2;

 return array;
}

int main(int argc, char * argv[]){
 int * a1 = makearray(10);
 int * a2 = makearray(10);
 int j, sum=0;

 for(j=0;j<10;j++){
 sum+=a1[j]+a2[j]
 }
 printf("sum: %d\n", sum);
}

2. For the above program,
rewrite the makearray()
function such that it does not
have a memory violation

3. Explain how your corrected
version of makearray() does not
have the same memory violations.

5/3/1/0	
 5/3/1/0

5/3/1/0	

5/3/1/0	

___/25	

NAME: __________________________	
 NAME: __________________________	

2	
 of	
 4	

8. For the code segment below draw the stack model, of pushes and
pops of function frames, through the end of execution, i.e., main()
being popped off the stack.

6. Draw and label the program
memory layout to the right.
Indicate which direction the
stack and heap grows.

7. What kind of memory
typically exists between the
stack and the heap?

int times(int a, int b){
 return a*b;
}

int add(int a, int b){
 return a+b;
}

int sub(int a, int b){
 return a-b;
}

int main(){
 int i = times(add(1,2),5)
 sub(i,6);
}

 push main |__main____|

 push minusone | add |
 |__main____|	

5/3/1/0	

5/3/1/0	

10/8/4/
2/0	

___/20	

NAME: __________________________	
 NAME: __________________________	

3	
 of	
 4	

9. Using malloc() write the command to allocate an array of 16 long
values:

long * larray = malloc ();

10. Using calloc() write the command to allocate the same array of
16 long values:

long * larray = calloc();

11. What are the two differences between malloc() and calloc() with
respect to array allocations?

12. Consider the following code sample for dynamically allocating an
array of mytype_t structures. Fill in the function deallocate such
that there are no memory leaks:

typdef struct{
 int * a; //array of ints
 int size; //of this size
} mytype_t;

mytype_t * allocate(int n){
 int i;
 mytype_t * mytypes = calloc(n,sizeof(mytype_t*));
 for(i=0;i<n;i++){
 mytypes[i]->a = calloc(i+1,sizeof(int));
 mytypes[i]->size = i+1;
 }
 return mytpes;
}

void deallocate(mytype_t * mytypes, int n){

}

	

13. Explain your
deallocate function above
and why you free()’ed
what you did

5/3/1/0	

5/3/1/0	

15/13/10
/5/0	

5/3/1/0	

___/30	

NAME: __________________________	
 NAME: __________________________	

4	
 of	
 4	

14. Explain why this is a legal cast between pointer types:

15. Continuing with the snippet code above, what does p[2] reference
with respect to the integer a.

16. Consider the code snippet below that prints the bytes of the
integer a in hexadecimal, what is the output?

unsigned int a = 0xcafebabe;
unsigned char * p = (char *) &a;
int i;

printf("0x");
for(i=0;i<4;i++){
 printf("%02x",p[i]);
}
printf("\n")

17. What is the difference between Big and Little Endian? Use the
above program output as part of your explanation.

18. Which endian representation does most computers use? How can you
tell from the sample program?

int a = 10;
char * p = (char *) &a;

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

5/3/1/0	

___/25	

