
IC221 System Programming
Spring 2014 NAME:__________________________
HW7

COLLABORATOR(S):__________________________	
	

1	 of	 4	

1. What is a process group and how does it relate to a job in the
shell?

2. How long will the following shell command run for? And why?

sleep 10 | sleep 20 | sleep 100 | sleep 30 | sleep 1

3. Explain the difference between sequential and parallel execution
of a command line?

4. For the following set of shell commands draw the process
groupings at the last command execution.

 #> cat | cat | cat > output &
 #> sleep 20 | sleep 30 &
 #> ps

	

	

	

	

bash 	

5/3/1/0

5/3/1/0

5/3/1/0

10/8/5/3/0

__/25

NAME: __________________________	

2	 of	 4	

5. For each of the system calls associated with process groupings,
match them to their description.

6. For each system call, briefly describe the resulting action:

getpgid(0)

setpgid(0,0)

setgpid(0,pgid)

setpgid(pid, 0)

7. Consider the following code snippet, what is the output and why?

setpgrp() _____

setpgid() _____

getpgrp() _____

getpgid() _____

(a) Returns the process group id of
the calling process

(b) Sets the process group id of the
calling process to its pid

(c) Returns the process group of a

process identified by a pid

(d) Sets the process group of the
process identified by pid to a
specified pgid

	

	

	

	

int main(){
 pid_t cpid;
 cpid = fork();
 if(cpid == 0){
 setpgid(0,0);
 if(getpid() == getpgid()){
 printf("C: SAME PGID");
 }
 _exit(0);
 }else if(cpid > 0){
 if(getpgid(cpid) == cpid){
 printf("P: SAME PGID");
 }
 wait();
 _exit(0);
 }
 exit(1); //fork failed
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

8/6/3/0

8/6/3/0

9/7/5/3/0

__/25

NAME: __________________________	

3	 of	 4	

8. Consider the following code snippet. If we were to run this
program in a terminal, will it be properly terminated by Ctrl-c? If
so, why? If not, why not?

9. All variables are duplicated in the child from the parent in a
fork: If a duplicated variable is edited in the child, does that
edit propagate to the parent? Why so, or why not?

10. Consider the following code snippet with the open file fight.txt
containing the text _Go_Navy!_Beat_Army! where _ indicates a space.
What is the output of this program, and why?

	
	
	
	
	
	
	
	
	
	
	
	
	
	

int main(){
 pid_t cpid;
 cpid = fork();
 if(cpid == 0){
 setpgrp();
 while(1);
 }else if(cpid > 0){
 wait();
 _exit(0);
 }
 _exit(1); //fork failed
}

	
	
	
	
	
	
	

int main(){
 pid_t cpid;
 int fd = open(/* fight.txt */);
 char buf[1024];

 cpid = fork();
 if(cpid == 0){
 read(fd, buf, 10);
 _exit(0);
 }else if(cpid > 0){
 wait();
 read(fd,buf, 10);
 write(1, buf, 10);
 _exit(0);
 }
 _exit(1); //fork failed
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

10/8/5/3/0

10/8/5/3/0

5/3/1/0

__/25

NAME: __________________________	

4	 of	 4	

11. The pipe() system call sets the value of two file descriptors in
an array: what is index 0 used for and what is index 1 used for?

12. What is the default action when a process writes to a pipe more
data than kernel buffer can hold? Can this default action be
changed?

13. Consider the following code snippet with the open file fight.txt
containing the text _Go_Navy!_Beat_Army! where _ indicates a space.
What is the output to stdout and what is the output to output.txt,
and why?

14. Explain how the system calls pipe() and dup2() combined can set
up a pipeline on the terminal.

	

	

int main(){
 int fd_in = open(/* fight.txt */);
 int fd_out = open(/* output.txt */)
 char buf[1024]

 close(0);
 dup2(fd_in,0);

 close(1);
 dup2(fd_out,1);

 while(scanf("%s",buf) != EOF){
 printf("%s\n",buf);
 }

 return 0;
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

5/3/1/0

5/3/1/0

10/8/5/3/0

5/3/1/0

__/25

