
IC221: Systems Programming

6-Week Practicum

February 14, 2014

Instructions:

• This is a 1 hour and 50 minute practicum.

• The practicum is open notes, open book, and open internet. Previous lab submissions count as notes.
You may not, however, communicate with anyone directly, e.g., via intstant message.

• Complete all the programs as described in this document and in the source code provided.

• To retrieve the source, run ∼aviv/bin/ic221-up, then
cd ∼/ic221/practicum/6-week

• All code submissions will occur via the ∼aviv/bin/ic221-submit with the option practicum/6-week.
You can submit multiple times, only your final submission will be graded.

• You must also turn in this document at the completion of the examination. Feel free to include any
notes or comments in writing within this document.

• You can test your submission by running the test script test.sh from the
∼/ic221/practicum/6-week directory. The test script will report pass or fail for each grad-
ing unit.

Name:

Alpha:

Question Points Score

1 5

2 10

3 10

Total: 25

IC221 6-Week Practicum February 14, 2014

1. [5 points] Change into the ic221/practicum/6-week/bash directory, where you will find the
following files:

• allnumbers.sh : Bash script you are to complete

• isnumber : Compiled executable

• isnumber.c : Source code for isnumber

Your goal is to complete the bash script allnumber.sh which will filter out all arguments that
are numbers, and echo them to the terminal line by line. For example:

#> ./ allnumbers.sh 1 b 2 3 a 5 -12

1

2

3

5

-12

#> ./ allnumbers.sh a b c

#> ./ allnumbers.sh

#> ./ allnumbers.sh 10 a 3

10

3

To assist in this process, you are provided an executable isnumber, which reads a “word” from
standard input, and exits with status 0 if the word is a number, or status 1 if the word is not
a number. Here is an example of its usage:

#> echo "12" | ./ isnumber ; echo $?

0

#> echo "a" | ./ isnumber ; echo $?

1

The source code for isnumber is provided below and is in the bash directory.

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char * argv []){

int i;

// Try a read a number from *stdin*

if(scanf("%d", &i) == 1){

return 0; // exit succes , 0, if is a number

}else{

return 1; // exit failur , 1, if not a number

}

}

Page 2 of 4

IC221 6-Week Practicum February 14, 2014

2. [10 points] Change into the ic221/practicum/c-prog directory, where you will find the fol-
lowing files:

• wordcounter.c : Source Code you are to complete

• wordcounter : Compiled executable for the source code

• sample.txt : Small test file

• hemmingway.txt : Longer test file

Your goal is to complete the wordcoutner.c program, which will is compiled to wordcounter

using the following command:

#> clang -g wordcounter.c -o wordcounter

The wordcounter program read from a file, stores each word and its length in an array of
structures, printing the list of words and their length once finished. The name of the files to
read from are provided as a command line argument. The structures used for storing words
are as follows, and are found in wordcounter.c:

typedef struct{

char * str; // pointer to a string

int len; // length of the string

} word_t;

typedef struct{

word_t ** list; // array of word_t pointer

int size; // size of the array

int nwords; // number of words in the array

} wordlist_t;

The function loadlist() is completed for you, as well as the main() function. You should
review the provided code for details on how the structures are used.

You must complete the printlist() and deletelist() function. The deletelist() functions
should properly deallocate a wordlist t so that there are no memory leaks. You should check
for memory leaks using valgrind.

The printlist() function will iterate through the list of a wordlist t printing out infor-
mation about each word t using the following print statement, where i is the index in list.

printf("%d: %s %d\n", i, wordlist ->list[i]->str , wordlist ->list[i]->len);

You must use the format output above to receive full credit. Error checking and reporting
for file I/O is provided for you, so the only additional output should be the print statements
above.

Page 3 of 4

IC221 6-Week Practicum February 14, 2014

3. [10 points] Change into the ic221/practicum/6-week/sys-prog directory, where you will
find the following files:

• read-struct.c : Program you are to complete

• read-struct : Compiled executable

• simple-db : Simple database file for testing

• bank-db : Larger database file for testing

Your goal is to complete the read-struct.c program so that it can read the contents of the
bank-db and simple-db databases. To complete this task, you must use the read(), open(),
and close() system call. read-struct.c should be compiled using the following command:

#> clang -g read -struct.c -o read -struct

The database files contain the raw bytes of the following structure, defined in read-struct.c:

struct bank_entry{

char first_name [64]; // string to store first name , max length 63+1 for NULL

char last_name [64]; // string to store last name , max lenght 63+1 for NULL

unsigned int balance; // account balance

unsigned int credit; // allowable credit

};

The read-struct.c program, given a file name as an argument, opens that file and attempts
to read all the data in that file to produce the following output:

#> ./read -struct simple -db

Name: Aviv , Adam

Bal: 1000

Crd: 20

#> ./read -struct bank -db

Name: Aviv , Adam

Bal: 2000

Crd: 10

Name: Blenkhorn , Kevin

Bal: 11231

Crd: 54

Name: McDowell , Luke

Bal: 5234

Crd: 10

Name: Chambers , Nate

Bal: 0

Crd: 8755

Name: Sikora , Matt

Bal: 22

Crd: 3872

Name: Watt , Eric

Bal: 42

Crd: 42

Each bank entry structure must be outputted using the following format print to receive full
credit:

printf("Name: %s, %s\n", be.last_name , be.first_name);

printf("Bal: %d\n", be.balance);

printf("Crd: %d\n", be.credit);

If an error occurs for any of the system calls, your program should report the error by printing
to standard error.

Page 4 of 4

