Experiences in Teaching an Educational User-Level
Operating Systems Implementation Project

Adam J. Aviv, Vin Mannino, Thanat Owlarn, Seth Shannin, Kevin Xu, and Boon Thau Loo

{aviv, vinm, towlarn, sshannin,

kevinxu, boonloo}@cis.upenn.edu

University of Pennsylvania

ABSTRACT

The importance of a comprehensive implementation component for
undergraduate Operating Systems (OS) courses cannot be under-
stated. Students not only develop deep insight and understanding
of OS fundamentals, but they also learn key software engineering
skills that only a large development project, such as implementing
an OS, can teach. There are clear benefits to traditional OS projects
where students program or alter real (Linux) kernel source or ex-
tend educational OS implementations; however, in our experience,
bootstrapping such a project is a huge undertaking that may not be
accessible in many classrooms. In this paper, we describe a differ-
ent approach to the OS implementation assignment: A user-level
Operating System simulation based on UNIX preemptive signaling
and threading constructs called ucontext. We believe that this
variation of the implementation assignment provides many of the
same educational benefits as traditional low-level projects without
many of the expensive start-up costs. This project has been taught
for a number of years at the University of Pennsylvania and was re-
cently overhauled for the Fall 2011 semester. This paper describes
the current version of the project and our experiences teaching it to
a class of 54 students.

Keywords

Education, User-Level, Undergraduate, Operating Systems, Instruc-
tion Experience

1. INTRODUCTION

The undergraduate Operating System (OS) course is a standard
litmus test for Computer Science (CS) majors throughout the world.
At the core of nearly all OS courses is a large scale implementation
assignment, or sequence of such assignments, that explore key OS
features. These projects are crucial: students learn how to design
and build large systems; often working in groups, students learn
the benefits (and pitfalls) of programming as a team; and finally,
students learn the intricacies of modern OSes, and as a side-effect,
how to really use and understand them.

However, designing and supporting a large implementation project
is an immense undertaking. We surveyed OS projects at the top

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

CS programs in the country’, and found that the vast majority of
the implementation projects involve developing low-level kernel
code?; that is, they require students to develop low-level code that
can boot on physical or virtual hardware or in a simulated envi-
ronment. Many of these course have long histories, developed
over many years by a dedicated faculty member and accompany-
ing teaching staff. They often require additional support, such as
specialized software or simulators (e.g., Nachos [5], Xinu [6], Sim-
ics [2], Pintos [8], GeekOS [7]) and/or dedicated machines and
labs.

The start-up cost of such course projects is immense, and the
rewards can be equally great. At the University of Pennsylvania,
we have developed a different strategy to the OS implementation
project that reduces much of the overhead. With the same edu-
cational goals as low-level implementation assignments, we have
developed a strict user-level OS simulation project, named Pen-
nOS, that can be developed on any commodity UNIX-based OS
installation without requiring students to have super user access,
specialized hardware, or additional software.

At the core of the PennOS project is an often overlooked standard
UNIX library, the user context library, that enables a single process
to share resources amongst different execution points, much like
threading. The user context library only requires user level access
and is standard on UNIX based OSes, and it is what enables Pen-
nOS to reduce much of the overhead without sacrificing the educa-
tional benefits. In this paper, we describe our experience teaching
PennOS in an undergraduate OS course at the University of Penn-
sylvania in the Fall 2011 semester. We designed PennOS to balance
the following three goals:

e Exposure to wide range of OS concepts. First, to comple-
ment lecture material on OS concepts, students gain “hands-
on” experience in actually building an OS that incorporates a
significant portion of the concepts learned in class. Based on
preemptive signaling and user contexts (UNIX’s ucontext
library), students are exposed to a wide range of OS con-
cepts — most importantly kernel-/user-level separation, pro-
cess life-cycle, priority scheduling, signaling, file-systems,
and shell development.

e Ease of configuration. We require that PennOS run on com-
modity PCs with no changes to the underlying operating sys-
tem or need for installing/running virtual machines or use of
specialized software. This makes it easy for system admin-
istrators to support the course even with large class sizes, or
when there are multiple project courses within the same de-
partment. As a result, the PennOS project is easily extended

' As ranked by the US News and World Reports [9].

2Similar survey findings were reported here [3] using a larger sam-
ple of 98 schools: 50% use kernel-level implementations.

or adapted to fit the needs of the class without affecting the
requisite lab support.

e Software engineering. Third, PennOS requires students to
program in groups of four, working together to develop a
complex system with approximately 6K lines of code on av-
erage. To get started, students have to read through substan-
tial documentation regarding the ucontext library and de-
velop their own test code for learning. Students build their
OS from scratch, and for many students, this constitutes the
most substantial implementation project in their undergradu-
ate curriculum. As a result, it is important to encourage and
teach strong software engineering concepts. This includes re-
quiring students to make use of code repositories for collab-
orative development, and to develop components separately
with future integration in mind.

The first two goals are often opposing forces in course projects.
A hyper realistic development environment that exposes students
to the gory details of developing an OS from scratch requires spe-
cialized hardware and resources. We argue that PennOS’s approach
provides a good balance between these two goals. While students
may not be exposed to the mechanics (and pain) of kernel-level pro-
gramming, the ucontext library still provides a high degree of
realism, in exposing students to low-level development challenges.

Finally, it is important to note that we do not argue that PennOS
is a “drop-in” replacement for traditional, low-level implementa-
tion assignments; rather, our intention is to present an alternative
assignment that covers many of the same key concepts, is easy to
manage, and hence, can be deployed and made more accessible in
resource-constrained environments and large classrooms alike.

2. COURSE OVERVIEW

To put PennOS in context, we first provide an overview of the
OS course taught at our university. Our course is offered annually
in the Fall semester, and it is a required course for CS majors in the
Engineering School and an elective for CS majors in the School of
Applied Science. Most students take the class during their junior or
senior year, and the average class size for the past three years is 44.
In the last offering, enrollment reached 54, and this in part reflects
the increasing number of CS majors.

Historically, the OS course had an accompanying half-credit lab
section, but this separate lab was recently removed from the cur-
riculum. Consequently, the course required restructuring so that
the core OS implementation concepts previously covered in the lab
could be integrated into a single full credit course with many more
students participating in the project. As a result, we overhauled the
project sequence to better fit the new demands of the class. Ta-
ble 1 presents the course schedule and topics, as well as the project
assignment timeline (based on release date).

Below we describe the sequence of projects, all of which are to
be programmed in C. In total, the projects are worth 55% of the
final grade. The remaining 45% consists of two midterms, written
homework assignments, and class participation. Refer to [1] for
more details on the course, including detailed project documents.

e Project 0: Timing Shell. Working individually, students
program a simple shell that times process execution using
alarm(), and will kill the running process if it executes
longer than a threshold. This project is worth 5% of the over-
all grade.

e Project 1: Feature Shell. Working in pairs, students pro-
gram a feature-rich shell with pipes, redirection, foreground

Week | Material Project
1 Introduction Project 0
2 Process/threads, system calls
3 Concurrency and synchro- | Project 1
nization
4 Scheduling
5 Deadlocks
6 Midterm and memory man-
agement
7 PennOS project discussion Project 2
8 Virtual memory
9 Virtual memory
10 Disks and file systems
11 File systems Milestone
12 Remote procedure calls
13 Network programming
14 Distributed file systems
15 Wrapup and midterm Demo

Table 1: Course Schedule

and background processes, job control, and asynchronous
signal handling. This project is worth 15% of the overall
grade.

e Project 2: PennOS. Working in groups of four, students pro-
gram an OS simulator with a preemptive priority scheduler
and a file system mount; additionally, PennOS boots into
a shell similar to Feature Shell, which links the scheduler
portion and the file system implementations. This project is
worth 35% of the overall grade.

The goal of the project sequence is to incrementally dive into
the design requirements of an OS by investigating the UNIX sys-
tem call interface. In the Timing Shell and Feature Shell, students
are exposed to the functionality and behavior of the core system
calls (e.g., fork (), wait (), read (), write ()), and in Pen-
nOS, students must implement many of those system calls within
their PennOS simulator. Although students cannot always port code
from one project to the next, each clearly builds upon the previous;
however, an inability to complete one part does not render the fol-
lowing assignments intractable.

Students have over six weeks to complete the PennOS project,
which is released after the first midterm. Halfway through Pen-
nOS, each group presents their progress in a milestone meeting, in
which the teaching staff provide feedback on the group’s develop-
ment progress (and can also steer errant groups back onto track).
The project culminates in group demonstration, during which the
teaching staff performs a mini code review, tests functionality, and
orally quiz groups on their development. Most of the grading is
completed during the demo, and we were able to finalize and re-
port grades within a week of submission.

In the rest of this paper, we will primarily focus on describing
the PennOS project and the user context library that enables it.

3. PENNOS

PennOS is composed of three parts: process management and
scheduling; file system and I/O; and shell integration. This division
allows students to develop the priority scheduler and the file system
independently (typically in groups of two). Once completed, stu-
dents glue them together during shell development, which requires
accessing the entire PennOS system call APL.

typedef struct ucontext {
struct ucontext xuc_link;
sigset_t uc_sigmask;
stack_t uc_stack;

} ucontext_t;

Figure 1: The ucontext_t Structure Type-Definition

Scheduling in PennOS is event driven, based on clock ticks oc-
curring every 10 milliseconds. On a clock tick, a SIGALRM is
delivered by the host OS and handled by invoking the PennOS
scheduler, which chooses the next process to run. Processes in Pen-
nOS are represented by user contexts, which are part of the built-in
UNIX library and enable programs to share their resources across
different execution paths.

The file system in PennOS uses a File Allocation Table (FAT)
and is contained within a single file on the host OS. It is mounted
in PennOS in a loopback-like fashion. One of the challenges stu-
dents face is how to appropriately write-through to the underlying
file and how to manage file descriptors. It is important to note that
the development of the core file system API (e.g., reading, writing,
creating and deleting files) can occur completely independently of
the scheduler, and we emphasize this by requiring students to de-
velop separate programs from PennOS that can read and write to
the file system.

The last part of the project involves developing a shell for Pen-
nOS to boot into. The shell’s features touch all major parts of the
kernel and file system implementation, and the integration between
the two disjoint developments was reported as one of the most chal-
lenging parts. We required the shell to support the following fea-
tures: foreground and background processes with job control; syn-
chronous child waiting; a complement of built-in functions, e.g.,
cat, nice, sleep, efc.; and redirection with truncation and ap-
pend modes.

In the rest of this section, we present more details on the require-
ments for PennOS. We pay particular attention to the user context
library and how we presented it to students. The user context li-
brary is fundamental to the project and was completely unfamiliar
to students prior to the course. We also focus more on the chal-
lenges of the projects, as reported by the students, rather than on
the low-level details. For more information about the particulars of
PennOS, please refer to [1].

3.1 User Contexts

A user context, or ucontext, describes an execution stack of a
running function, and it allows for the current state of execution to
be saved (i.e., preempted) and restarted later. In PennOS, students
represent a process as a ucontext, scheduling them in and out as
appropriate. Additionally, they can program a special ucontext
to represent the kernel (and init for extra credit).

Programming directly with ucontext could be considered ar-
cane — even the most proficient UNIX programmers may not have
used them — but ucontext are implicit to all programs, especially
those that rely on any form of preemption like signal handling and
threading. Learning the ucontext library is also beneficial to
students and aids their general understanding of the mechanics be-
hind process/thread management. User contexts are what enable
PennOS’s user-level development, and in this subsection, we focus
on how we present and teach user contexts to students.

Introducing User Contexts. When presenting the
ucontext library to students, we found that examples from signal

handling are most accessible because they relate well to previous
projects and lectures. As a starting point, we refer students to the
signal handling mechanisms they used in the Feature Shell project.
In that project, students were expected to used the sigaction ()
system call for asynchronous signal handling. First, we direct stu-
dents to sigaction () ’s UNIX manual and its description of the
sigaction structure that defines the signal handler, particularly
to the advanced type definition for the handler function,
sa_sigaction,

void (xsa_sigaction)(int, siginfo_t =*, void x);
and its accompanying description:

This function receives the signal number as its
first argument, a pointer to a siginfo_t as its
second argument and a pointer to a ucontext_t
(cast to void =) as its third argument.

That is, the signal handling function is wrapped within a ucontext

that is different from the ucontext of the main execution path of
the program. This is natural: handling a signal requires the current
execution to be preempted to run some other function (the signal
handler), after which execution is returned to the original execution
point. That is precisely what ucontext are designed to enable.

Once students grasp the key functionality of ucontext (as a
mechanism for a process to maintain different execution states),
it is an easy leap for them to represent a ucontext as a Pen-
nOS process. In other words, a ucontext is an abstract structure
and mechanism for PennOS to share its resources amongst differ-
ent execution states. Likewise, a process is an abstract structure and
mechanism for an OS to share the CPU resources amongst different
execution states.

Mechanics of User Contexts. The next educational challenge
is teaching students the mechanics and requisite system calls to
explicitly start, save, and swap in and out a ucontext. The
ucontext library primary structure is a ucontext_t. To ini-
tialize a ucontext_t, the getcontext () system call is used.
This initializes the structure with appropriate (often machine de-
pendent) values; however, many of the other fields of the
ucontext_t still need to be set.

The three primary structural values are presented in Figure 1.
The first value, uc_11ink, refers to the ucontext that should be
set once this one completes. The uc_sigmask and uc_stack
are the signal mask and the stack to use when running this
ucontext, respectively.

Notice that the function that is to run when the ucontext is
started is not specified in the structure. This is because the
ucontext_t is agnostic to the code that will execute when it
is set, and in fact, the same ucontext_t (in memory) can be
used repeatably with different functions. To actually assign the
function to run, the ucontext_t must be made with a call to
makecontext (), and it can be remade repeatably and reused for
a different function execution. However, if this step is neglected,
as students quickly found out, the program will often SEGFAULT
when setting the ucontext. This was one of the most common
errors, as well as overflowing the stack allocation.

The last two requisite library functions are used to set and swap
user contexts. Their type definitions are as follows:

int setcontext(const ucontext_t =ucp)
int swapcontext(ucontext_t xoucp, ucontext_t xucp)

The distinction between these two functions is a point of confusion
for many students, even though both essentially perform the same
task of setting the current ucontext to ucp. The only differ-
ence is that swapcontext () additionally saves (and makes) the

maincontext

swapcontext (&émaincontext,
&handlercontext) ;

main (void) {

foo

[
[
¥

< STIGALRM handlercontext
1| bar(); void handler (int signum) {
1 printf (“Handled!\n”)
}
y| pazo;

printf (“Hey\n”);

s

Figure 2: Swapping and Setting Contexts as Exemplified by
Signal Handling

setcontext (&maincontext) ;

current ucontext in oucp while setcontext () only sets the
context without saving.

To illustrate the difference between these two functions, we again
used a signal handling example. Referring to Figure 2, when the
SIGALRM is delivered, first the current ucontext must be saved
and the handler ucontext swapped in. This is accomplished
with a call to swapcontext (). Once the handling function re-
turns, control is returned to the main ucontext with a call to
setcontext () since the handler context does not need to be re-
tained.

Finally, once students are familiar with the mechanics of the
ucontext library, the first exercise is to alter a “Hello World”
program. Figure 3 presents the sample “Hello World” program
we provided students in the project write-up, and we encouraged
students to complete the following exercises: (1) Use uc_link
to have execution return to main; (2) Do the same without using
uc_link; and (3), Program an infinite loop of “Hello World”
prints using the same ucontext_t structure.

3.2 Kernel Development

In this section, we describe the high-level requirements of the
kernel, which includes programming a simple priority scheduler
and managing the process life-cycle. At this point, after under-
standing ucontext, we encouraged groups to split into two teams
of two. One team continues with kernel development, and the other
team starts developing the file system; however, we encouraged
teams to inform the other throughout the development because they
need to ensure that the parts can correctly interface later.

The first task of the kernel development team is to outline the pri-
mary structures and process-centric system call API for their Pen-
nOS. In particular, they need to define the Process Control Block
(PCB) structure. Just as in traditional OSes, the PCB stores all
requisite information about a running process, such as its process
ID, parent process ID, open file descriptors, list of children pro-
cess, state flags, efc.. The next two tasks involves implementing
the scheduler and handling process state and signaling.

Priority Scheduling. = We required students to program a very
simple priority scheduler with three priority queues: -1, 0, and
1. The lower the priority number the more frequently the process
should be scheduled, e.g. the shell should run with priority -1 be-
cause it is interactive. We require that processes with priority -1
get schedule 1.5 times as often as those with priority 0, which get
scheduled 1.5 times as often as processes with priority 1. Within

void f (){
printf ("Hello World\n");
}

int main(int argc, char argv[]){
ucontext_t uc;
void * stack;

//initialize ucontext_t structure
getcontext(&uc);

//set its values

stack = malloc (STACKSIZE);
uc.uc_stack.ss_sp = stack;
uc.uc_stack.ss_size = STACKSIZE;
uc.uc_stack.ss_flags = 0;
sigemptyset(&(uc.uc_sigmask));
uc.uc_link = NULL;

//assign the function f to execute at start
makecontext(&uc, f, 0);

//set the context to uc
setcontext(&uc);

//setcontext() doesn’t return on success
perror("setcontext");

return 0;

Figure 3: Hello World using ucontext

each queue, processes are to be selected in a round-robin fashion.

Granted, this style of priority scheduling is non-traditional, but
since I/O blocking is still controlled by the host OS, it is difficult
to implement a classic multi-level scheduler. However, an approx-
imation of I/O blocking can be achieved by having a special 1/O
ucontext (scheduled like any other process) which queues and
handles I/O requests bound for the file system. PennOS processes
with an enqueued request are considered blocked until all read-
ing/writing is completed. This enables students to implement the
elevator algorithm, and we allowed students to attempt this as extra
credit, which was successfully completed by two teams.

Process States and Signals. Another requirement of the kernel
is tracking processes’ life-cycle states. PennOS maintains many of
the same process states as traditional OSes; however, there is only
a single explicit blocking situation, when a process is blocking on
await () call. The process life-cycle from spawning, running,
and termination is as expected, and once a process terminates, it
becomes a zombie and is placed in the zombie queue of its parent
so that it may be reaped. We did not require an init process,
and as such, the procedures for handling orphans was to immedi-
ately remove them and clean up their resources. We note however
that implementing an init process (to run at priority 1) is an easy
extension and was an optional extra credit which four teams com-
pleted successfully.

We also require that PennOS handle stopping, continuing, and
killing processes, which requires a form of simple signaling. In-
stead of using signal queues and handler functions, we allowed stu-
dents to treat signals as prompts to the kernel to take a particular
action. For example, if the SIGKILL signal is directed at a tar-
get process, the kernel marks that process as terminated and moves
it to the zombie queue of its parent. Similarly, if a SIGSTOP or
SIGCONT signal is delivered, the target process transitions from a
runnable to stopped state, or vice versa respectively.

We felt that implementing a signal queue and handler functions
may be too much of a burden for students, and as such, we do not

[ticks] SCHEDULE PID QUEUE PROCESS_NAME
[ticks] CREATE PID NICE PROCESS NAME
[ticks] SIGNALED PID NICE PROCESS NAME
[ticks] EXITED PID NICE PROCESS NAME
[ticks] ZOMBIE PID NICE PROCESS NAME
[ticks] ORPHAN PID NICE PROCESS NAME
[ticks] WAITED PID NICE PROCESS NAME
[ticks] NICE PID OLD_NICE NEW_NICE PROCESS NAME
[ticks] BLOCKED PID NICE PROCESS NAME
[ticks] UNBLOCKED PID NICE PROCESS _NAME
[ticks] STOPPED PID NICE PROCESS NAME
[ticks] CONTINUED PID NICE PROCESS NAME

Figure 4: Logging Events

require asynchronous signal handling. This inhibits a SIGCHLD-
like signal, which also simplifies the shell’s child waiting proce-
dure. It should be noted that asynchronous signaling and handling
is a reasonable extension to PennOS, particularly given the nature
of the ucontext library, and in future revisions, we intend to
make it an extra credit option.

3.3 File System

The file system development team is tasked with implementing a
File Allocation Table (FAT) based file system with 1MB file block.
The file system data exists within a single file on the hosts OS and
is mounted in a loopback-like manner. We only require the file
system to have a single directory, but we allowed groups to imple-
ment multi-level directories as extra credit (which was successfully
completed by four groups).

To facilitate testing and debugging, we require students to pro-
vide two programs that can read and write to the file system from
the host OS. These two programs touch all the key file system re-
lated system calls, and this allows the file system team to test and
debug their implementation without interfering with the kernel de-
velopment. It also encourages students to carefully plan their API
so that the code can be ported into the main kernel develop at inte-
gration.

The details of the file system are rather straightforward, and stu-
dents easily handled the data layout required. The most challeng-
ing part for students was maintaining consistency with the file sys-
tem on disc, reading and writing it into memory and ensuring that
all edits get written back to disc. We suggested that students use
mmap () with a write-through mapping for the file blocks that need
altering, and many groups did, but often students found it easiest
just to map the entire file system into memory. We limited the file
system size, based on the size of the FAT (just 512 entries), and so
this turned out to be a reasonable choice.

Another area where students reported challenges was in main-
taining file descriptor consistency. This is particularly important
because once the file system is integrated with PennOS, there are
really two types of file descriptors: descriptors for files open from
the file system and descriptors for standard input and output. We re-
quired that PennOS provide a single interface for reading and writ-
ing, just read () and write () system calls. The I/O module
must therefore be able to handle a descriptor appropriately depend-
ing on the intention of the user. Students discovered that some
carefully placed conditionals cleared up their confusion.

3.4 The Shell and Integration

Once each part is near completion, groups merged their develop-
ments by implementing a basic shell with a number of built-ins. In
particular, the shell is comprehensive with respect to the requisite
PennOS system calls by requiring the following features:

e Redirection: The shell must provide stdin and stdout
redirection to and from the file system in both append (>>)
and truncate (>) mode.

e Job Control: The shell must provide simple job control (e.g.,
jobs, bg, and £g) and the ability to start programs in the
foreground and background.

e Synchronous Child Waiting: The shell must wait on its
children in a consistent manner, and without a STGCHLD sig-
nal, this can be done synchronously, e.g., using a W_NOHANG
like flag in wait ().

e Built-In and Library Functions: The shell must also pro-
vide a number of built-in and library functions to facilitate
use and testing. For example, the standard programs like
cat, ps, and sleep were required, but we also required
groups to have a busy and an orphan program which loops
indefinitely or purposely creates an orphan process, respec-
tively.

Each of these requirements is dependent on completing the ker-
nel and file system components; for example, redirection depends
on the file system integration, and job control and child waiting de-
pends on the kernel. Students aptly noted that when testing their
shells, a number of assumptions and bugs were exposed, as was the
intention. One of the project goals is to teach software engineering
lessons, and interfacing and accessing other code is a major part of
that intellectual development.

3.5 Logging and Testing

An important requirement of PennOS is logging. This not only
aids the teaching staff, but also guides the students in debugging.
We required students to use a consistent format for easy parsing
and grading. The logging events and the format are presented in
Figure 4.

From these events, all the major state changes and events are
present, and when helping students debug their projects in office
hours (and in the milestone and demo), this was an invaluable re-
source. One strategy we found useful was decreasing the clock tick
rate (e.g., to 500 milliseconds) and examining the log as it is written
using tail.

Another test we found useful for debugging the scheduling be-
havior is to monitor the CPU usage of PennOS using a tool like
top. For example, if there are two programs running in PennOS,
the shell with priority -1 and a busy wait program with priority 0,
the expectation is that PennOS will use approximately 40% of the
host OS CPU resources (when no other computation-intensive pro-
grams are running). This is because the shell is blocking (from
the host OS) on a read from stdin which is scheduled 1.5 as fre-
quently as the busy program which is consuming CPU resources.

When testing the file system, the most valuable tool is he xdump.
This allowed students to visually inspect the FAT and file block lay-
out. The two additional programs which students are required to
create also greatly aid in debugging because they focus on the core
reading and writing of the file system. These programs can also be
easily run alongside a standard debugging tool, such as gdb and
valgrind. Unfortunately, this is not easily done with the full
PennOS development because gdb and valgrind do not grace-
fully handle the ucontext library. However, students were still
able to work through most of their problems using the methods de-
scribed above, and it is important to note that in more low-level
development these tools are also cumbersome.

4. EVALUATION AND EXPERIENCE

Student feedback on PennOS has been overwhelmingly positive.
The course ratings and enrollment are the highest in the past three
years (since the lab component was removed). In the course eval-
uation, students found the project “very rewarding”, “very interest-
ing and intellectually challenging”, and felt the projects made them
“more comfortable around low-level C than ever before.” They
also reported that the project “was an incredible experience” and
“hoped to have more classes like this one.” 62% of students gave
the class the highest possible score of 4 (on a scale from O to 4) on
the amount learned in this class in terms of knowledge, concepts,
skills and thinking ability.

At the same time, the class was also rated the second most chal-
lenging course in the department for both graduate and undergrad-
uate students, and was the most challenging undergraduate course
in the Fall 2011. 57% of students gave the class the highest diffi-
culty rating of 4. Students found the course “grueling,” particularly
in the second half of the semester. However, students also pointed
out that despite the difficulties and time spent, they “learned more
in this course compared to any of my other cs courses”, and “highly
recommended the course for every cs major.”

We did receive valid criticism in the reviews. Students responded
that the lectures and projects were not well integrated. While the
topics (e.g. scheduling, file systems) covered in class are conceptu-
ally featured in the projects, students at times felt that there were in
fact two classes running side-by-side, one involving textbook ma-
terial and one involving the PennOS project sequence. This is in
part a result of merging the OS class syllabus with the now defunct
lab syllabus, and further, this was the first time PennOS was taught
without a lab section. With the benefit of hindsight, an important
next step in the OS class development is to revisit the lectures and
better integrate them with the project so that key concepts are rein-
forced in and out of the classroom.

S. RELATED WORK

There is a rich history of OSes designed specifically for educa-
tional purposes in the literature; most notably, Xinu [6] and Na-
chos [5]. Additional educational OSes such as PintOS [8] and
GeekOS [7] are also used at universities and colleges throughout
the world, and with the advent of mobile technology, OS imple-
mentation projects based on developing networking principals have
also been proposed, such as PortOS [4].

There are two major difference between PennOS and these pro-
posals. First, PennOS is specifically designed to run at the user-
level and take full advantage of the UNIX system call interface.
It is not designed to run on real or simulated hardware, but the
implementation experience and educational lessons are an excel-
lent primer for more advanced developments. Second, PennOS is a
standalone project, built by students from scratch without the need
of additional software. The proposals listed above are designed for
students to extend and build upon an existing code base. While this
is an important software engineering lesson, the freedom and de-
sign experience of building comprehensive software from scratch
resulted in students feeling strong ownership for their work. We
were surprised at the many different ways student chose to imple-
ment their PennOS.

6. CONCLUSION

In this paper, we describe our experiences at introducing OS
concepts through building PennOS, a user-level operating system
simulation. The project has been very well received by students,
receiving positive feedback and high teaching evaluations.

PennOS balances realism and ease of management while all im-

plementation occurs at the user-level, only requiring a commod-
ity UNIX environment without any additional software. Central to
its success is the ucontext library, a UNIX built-in library that
enables processes to share resources amongst different execution
points. The use of the ucontext library ensures that students are
exposed to many of the same concepts as they would be in low-level
projects, and since PennOS is a user-level development, it eases the
configuration demands and reduces the learning curve such that stu-
dents can complete a large-scale OS simulator within a relatively
short time period.

Moving forward, we plan to tighten the integration of the project
and the lecture material, as mentioned in Section 4. One key piece
of OS design lacking from the project is memory management, and
in future revisions, we plan to incorporate an MMU implementation
in the project (it was an extra credit in the current version). Other
features like networking and socket layers are also possible project
extensions.

References

[1] CIS 380: Operating Systems. http://www.cis.upenn.
edu/~cis380/.

[2] Simics. https://www.imics.net.

[3] Charles L. Anderson and Minh Nguyen. A survey of contem-

porary instructional operating systems for use in undergraduate

courses. J. Comput. Small Coll., 21:183-190, October 2005.

Benjamin Atkin and Emin Giin Sirer. Portos: an educational

operating system for the post-pc environment. In Proceedings

of the 33rd SIGCSE technical symposium on Computer science

education, SIGCSE °02, pages 116-120, 2002.

Wayne A. Christopher, Steven J. Procter, and Thomas E. An-

derson. The Nachos Instructional Operating System. In

USENIX Winter 1993 Conf., 1993. http://www.cs.

washington.edu/homes/tom/nachos/.

[6] Douglas E. Comer. Xinu Operating System. Prentice Hall,
1987. http://www.cs.purdue.edu/research/
xinu.html.

[7] David Hovemeyer, Jeffrey K. Hollingsworth, and Bobby Bhat-

tacharjee. Running on the bare metal with geekos. In Proceed-

ings of the 35th SIGCSE technical symposium on Computer

science education, SIGCSE ’04, pages 315-319, 2004.

Ben Pfaff, Anthony Romano, and Godmar Back. The pintos

instructional operating system kernel. In Proceedings of the

40th ACM technical symposium on Computer science educa-

tion, SIGCSE °09, pages 453-457, 2009.

[9] U.S. News University Directory. Top Computer
Science Schools & Best Ranked Colleges, 2010.
http://www.usnewsuniversitydirectory.
com/graduate-schools/sciences/
computer-science.aspx.

[4

—

(5

—_—

[8

—

Instructional Material

Detailed project descriptions and lecture slides are available for
viewing at [1]. Further materials, including example code and
project demonstration plans are available to instructors upon re-
quest. We welcome feedback from the community, and look for-
ward to further developments of PennOS, with your support and
participation.

Acknowledgements

The PennOS project presented herein is based on previous versions
and has had many contributors over the years. Particularly, we
would like to acknowledge contributions by Sandy Clark, Micah
Sherr, Eric Cronin, Stefan Miltchev, Guarav Shah, Hee Hwank
Kwak, Stuart Eichert, Scott Raven, Jon Kaplan, Robert Spire, Di-
anna Xu, and Insup Lee.

http://www.cis.upenn.edu/~cis380/
http://www.cis.upenn.edu/~cis380/
https://www.imics.net
http://www.cs.washington.edu/homes/tom/nachos/
http://www.cs.washington.edu/homes/tom/nachos/
http://www.cs.purdue.edu/research/xinu.html
http://www.cs.purdue.edu/research/xinu.html
http://www.usnewsuniversitydirectory.com/graduate-schools/sciences/computer-science.aspx
http://www.usnewsuniversitydirectory.com/graduate-schools/sciences/computer-science.aspx
http://www.usnewsuniversitydirectory.com/graduate-schools/sciences/computer-science.aspx

	Introduction
	Course Overview
	PennOS
	User Contexts
	Kernel Development
	File System
	The Shell and Integration
	Logging and Testing

	Evaluation and Experience
	Related Work
	Conclusion

