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ABSTRACT

SIDE CHANNELS ENABLED BY SMARTPHONE INTERACTION

Adam J. Aviv

Supervisors: Jonathan M. Smith and Matt Blaze

As smartphones become ever more present and interwoven into the daily comput-

ing of individuals, a broader perspective of the differences between computer secu-

rity and smartphone security must be considered. As a general purpose computer,

smartphones inherently suffer from all the same computer security issues as tradi-

tional computers; however, there exists fundamental differences between smartphones

and traditional computing in how we interact with smartphones via the touchscreen.

Smartphones interaction is physical, hand-held, and tactile, and this thesis shows

how this interaction leads to novel side channels.

This is demonstrated through the study of two side channels: One based on exter-

nal smartphone observations via photographic and forensic evidence, and the other

based on internal smartphone observations via the smartphone’s on-board sensors.

First, we demonstrate a smudge attack, a side channel resulting from oily residues

remaining on the touch screen surface post user input. We show that these external

observations can reveal users’ Android password patterns, and we show that prop-

erties of the Android password pattern, in particular, render it susceptible to this

attack. Next, we demonstrate a sensor-based side channel that leverages the smart-

phones internal on-board sensor, particularly the accelerometer, to surreptitiously

learn about user input. We show that such attacks are practical; however, broad

dictionary attacks may be challenging.

The contributions of this thesis also speak to the future of security research as

new computing platforms with new computing interfaces are developed. We argue

that a broad perspective of the security of these new devices must be considered,

including the computing interface.
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Chapter 1

Introduction

Smartphones continue to revolutionize computing. Not only are smartphones com-

prehensive computing platforms capable of performing complex tasks, but they have

also become intimately integrated into the daily lives of their owners. Smartphones

are used in a wide variety of ways, including email, web, navigation and banking; not

to mention, the smartphone is also a traditional cellular/mobile phone used for voice

and text based communication. In many ways, the smartphone could be considered

the most personal computer to date.

When placing smartphones within the context of security and privacy research,

it leads to the question: How does computer security differ from that of smartphone

security? A smartphone is a general purpose computer running an operating sys-

tem and executing arbitrary programs. As such, smartphones suffer from all the

same security and privacy issues that plague traditional desktop/laptop computing

enviroments; however, a smartphone is different, and one area in particular that dif-

ferentiates smartphones from traditional computers is in the preferred interaction

mechanisms, namely touchscreens. Unlike traditional computers, we interact with

our smartphones in a tactile and physical way by holding the device in our hands

while touching and gesturing on the screen with our fingers.

Traditional computer security research in the domains of information flow analy-
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sis [42, 24, 28, 45, 50, 38], policy specification and enforcement mechanisms [29, 85],

and virus/malware detection [67, 91] are easily adapted and applied to modern smart-

phones because of the strong similarity with traditional computing. However, these

techniques do not account for the new physical interaction layer promoted by smart-

phones, and in this thesis, we demonstrate the risk of ignoring the interaction layer

by investigating the practicality of two side channels that are a direct result of the

touchscreen interface.

A side channel is a failure of the application or implementation of a security mech-

anism that unintentionally leaks secure input. Perhaps the best known side channels

in the security literature are timing channels discovered in popular cryptographic

protocols [60]. These side channels leverage timing dependencies in the implementa-

tion of the cryptography where upon successive runs of the algorithm the secret key

is revealed. More related to this thesis are physical side channels that leverage side

effects of the physical interaction when providing input; for example, acoustic side

channels on keyboard leverage the sound of keyboard key-presses to reveal what was

typed [11, 120].

In this thesis, we continue the investigation of physical side channels as applied

to smartphones, and show that novel physical side channels exist that are a direct

consequence of the tactile and physic interaction promoted by touchscreens. Our

analysis proceeds from two perspectives: first, an externally observable side channel

where an attacker uses forensic visual evidence to determine secure input provided on

the touchscreen; and second, an internally observable side channel where an attacker

leverages the smartphones on-board sensors to learn about secure input provided on

the touchscreen.

As an example of externally observable side channels, we measure the effectiveness

of smudge attacks. A smudge attack leverages the oily residues (or smudges) that

remain on the touchscreen surface post user input. We apply the smudge attack to

Android’s password pattern which is one of the procedures that can be used to unlock

an Android [53] smartphone. The password pattern is a graphical password scheme

2



where users “draw” a pattern that interconnect dots displayed on the touchscreen.

We show that under diverse lighting and photographic settings, the likelihood of

capturing a useful smudge to identify (or greatly reduce the search space for) a user’s

pattern is surprisingly high. In our best performing scenario, smudges reveal the

password pattern partially in 92% of the tested lighting and photographic setups,

and in 68% of the tested setups, the pattern is full revealed. Even in our worst

performing experiment, under less than ideal pattern entry conditions, the pattern is

partially revealed in 37% of the setups and fully in 14% of them. Further, we argue

that properties of the Android password pattern render it particularly susceptible to

smudge attacks, and that the security of the pattern unlock mechanism should be

reconsidered in light of these results.

In the second domain of internally observable side channel, we investigate how

the subtle movement of the phone resulting from hand-held interaction reveal user

input via surreptitious measurements from the smartphone’s on-board sensor. We

describe such an attack as a sensor-based side channel. Although we are not the first

to demonstrate a sensor-based side channel [25, 86, 117], we are the first to investigate

using the accelerometer sensor in detail. Focusing on password patterns and PINs, we

collected the most diverse and largest sensor measurement data set for smartphone

input to date, which includes 24 users providing 5 samples of 50 PINs and/or 50

patterns in controlled and uncontrolled settings. Using novel features adapted from

signal processing, our models can accurately select the precise PIN entered 43% of the

time and password pattern 73% of the time within 5 guesses when selecting from the

test set of 50 possible PINs or 50 possible patterns. We additionally apply sequence

learning techniques, such as hidden Markov models, and show that we can predict

PINs 40% and patterns 26% of the time on this significantly harder problem where

random guessing is roughly 0.01%.

As benign as a touchscreen may seem, this thesis shows that the consequences

of this interaction layer leads to surreptitious information leakage not considered

previously. This leakage occurs externally via smudge attacks and internally via
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sensor-based attacks, and these techniques are not only viable attack tools, but are

also difficult to mitigate with current security procedures.

The results described in this thesis illuminate just some of the differences be-

tween smartphone and traditional computing and the effects on security and privacy.

Security research on smartphones has primarily focused on applying well developed

security techniques and analysis adapted from traditional computing. These appli-

cations are effective because of strong similarities between computing environments;

namely, a smartphone is a comprehensive computer in nearly all respects. However,

we argue that a broader perspective should be taken that also accounts for smart-

phones’ preferred interaction mechanism, the touchscreen. As smartphone become

ever more integrated into our daily lives, it is important to understand the security

of these highly personal devices comprehensively, from hardware layers to application

and software layers, and all the way up to the user interaction layer. This thesis is

a first step in that direction which we hope will continue as new computing devices

with new interaction mechanisms are developed and deployed.

1.1 Contributions

Throughout this thesis we highlight the contributions of our investigation. To sum-

marize, this thesis demonstrates that there exists novel side channels that are a direct

result of the smartphone user interaction layer, the touchscreen. This is supported

through investigations of two novel side channels, the smudge attack and a sensor-

based side channel. In this section, we outline the contributions of this thesis, begin-

ning with the high-level contributions, and following, we outline in more detail the

contributions related to the study of the individual side channels.

High-Level Contributions

This thesis makes the following high-level contributions via its investigation of side

channels resulting from the smartphone touchscreen interaction:
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• Identify that the touchscreen interface leads to novel side channels on

smartphones: This thesis shows that both externally and internally observable

side channels exist on smartphones that are a direct result of the touchscreen

interface.

• Demonstrate that smudge attacks are a viable attack tool: Through

our analysis of over 250 images of smudges, we show that forensic investigation

of touchscreens can leak substantial information about users password patterns,

even under diverse settings.

• Demonstrate that acclerometer sensor-based side channels are practi-

cal: Through our analysis of accelerometer measures of 24 users under diverse

settings, we show that the accelerometer sensor is capable of inferring broad

input, including password patterns and PINs; however, we also identify key

challenges in expanding this analysis in a dictionary style attack.

Contributions: Smudge Attacks

In addition to these high level contributions, the analysis performed in this thesis led

to additional contributions. First, with respect to our analysis of smudge attacks, we

identified three key issues regarding smudges on touchscreen that increase the threat

of smudge attacks.

• Smudges are surprisingly persistent in time: Smudges remain on the

touchscreen surface for a long time. One smartphone in our study retained

a smudge for longer than a month without any significant deterioration in an

attacker’s collection capabilities.

• Smudges are surprisingly difficult to incidentally obscure or delete

through casual use of the phone: In one part of the study, we placed

and removed a phone from a users pocket multiple times without significant

detriment to the clarity of the smudge. We also casually wiped the phone on
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a paints leg, as one might do if the screen was dirty, and still the smudge was

reasonably legible.

• Collecting and analyzing smudge images is easy to do with readily-

available equipment, such as a standard digital camera and a com-

puter: Although, we used commercial grade camera and imaging editing suite,

neither is required to perform a smudge attack. We additionally took pho-

tographs using standard “point-and-shoot” camera that were more than suffi-

cient, and only standard lighting and color contrast adjustments are required

for the photo editor.

We also identified a number of key issues with the Android password pattern that

render it particularly vulnerable to attacks of this nature. Some of this analysis of

the Android password pattern also applies to the results from our sensor-based side

channel investigation.

• Password patterns smudges can be differentiated from other appli-

cation smudges: The requirements of the password pattern and that it is

limited to a fixed location on the screen affect residual smudges such that they

are fairly unique when compared to general application smudges.

• Repeated pattern entry: The Android password pattern must be entered in

whenever the smartphone is used, and thus, the likelihood of a pattern smudge

on the touchscreen is relatively high.

• Significant human factors: From our experiences, we posit that there is

significantly fewer “usable” patterns than the total available patterns. We found

that many password patterns were very difficult to enter reliably, requiring

convoluted traversals, and were generally hard to remember.
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Contributions: Sensor-Based Side Channels

Finally, we make a number of contributions in this thesis to the study of sensor-based

side channels. Generally, we show that the accelerometer sensor can form the basis

of a powerful sensor-based side channel, and we collected a large data set to measure

the capabilities of an attacker performing such an attack. More specifically, we make

the following contributions through our investigation of sensor-based side channels:

• Collect large and diverse smartphone sensor reading data set: We

perform the largest user study of sensor-based side channels to date, 24 users

and over 9,600 samples, and the first study to consider both controlled (while

users sit) and uncontrolled settings (while users walk).

• Show that the accelerometer sensor is capable of inferring user input:

We demonstrate that the accelerometer sensor is also a highly capable side

channel against secure input, such as PINs and password patterns, and general

input based on touch/tapping or gesture/swiping. In comparisons to previous

results, where applicable, accelerometer data performs nearly as well, or better,

than gyroscopic data as reported by previous studies.

• Show that movement noise affects the performance of sensor-based

side channels: We are the first to investigate the effects of movement noise,

such as walking, on sensor-based side channel inference techniques: Some tech-

niques experienced only marginal decreases in performance, while others, were

rendered completely ineffective.

• Show that dictionary based attacks are practical but challenging in

this domain: We observe that there is reasonable consistency across users

and devices; however, movement noise and user variance may be too great to

construct an accelerometer-reading to input dictionary mapping.
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• Develop signal processing based features for sensor measurements,

first applied in this domain: We develop novel features for accelerometer

readings that are sample rate independent and based on signal processing and

polynomial fitting techniques; the first time such techniques are applied in the

domain of sensor-based side channels.

1.2 Organization

In the remainder of this thesis, we support our arguments by first presenting the

reader with requisite background information in Chapter 2. We first discuss the

Android operating system and its security mechanisms, including the Android pass-

word pattern. Following, we discuss the on-board sensors available via the Android

development kit. In Chapter 3, we present our analysis of the smudge attack. We

describe our experimental setup and analysis, as well as features of the Android

password pattern that lend itself to this attack. In Chapter 4, we describe the

sensor-based side channel attack using the accelerometer. We discuss our experimen-

tal applications that collect accelerometer data while users provide secure input, as

well as the novel features we developed to analyze this data. In Chapter 5, we

discuss the related work. This covers current security research on Android OS, in-

cluding information flow analysis, policy and enforcement mechanisms, and virus and

malware detection. We also discuss related work in the domain of side channels, from

cryptographic side channels through related work on smartphone and sensor-based

side channels, and we conclude the chapter with a discussion of other security mech-

anisms that can be developed from smartphone sensors, such as biometrics. Finally,

in Chapter 6 we conclude the thesis.
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Chapter 2

Background

In this chapter, we present background on the Android operating system. First, we

provide general information about Android and its security mechanisms. Following,

we discuss the Android password pattern which is the subject of both the smudge and

sensor-based side channel attacks. Finally, we discuss the various sensors available to

developers through Android’s API.

2.1 Android OS and Security Mechanisms

In this thesis, our experiments rely heavily on the Android Operating System for

smartphone devices. Android [53] is owned by Google Inc. and is developed in

collaboration with the Open Handset Alliance [8]. Android is an open-source project1,

which is why it is used in many academic studies. As opposed to Apple’s iOS – Apple’s

iPhone/iPad operating system – iOS is highly propriety and mostly closed off from

research pursuits. Throughout this thesis, we use Android smartphone devices in

our experiments, exclusively. For a complete list of devices used and in which study,

please refer to Table 2.1.

The Android OS is based on Linux; however, most developers interact with An-

1Most code from the Android project is under the Apache License: http://www.apache.org/

licenses/LICENSE-2.0.html
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Manufacturer & Model Smudge/Sensor Number Used
HTC G1 Smudge 3
HTC Nexus 1 Smudge/Sensor 2
HTC Droid Incredible 1 Sensor 1
HTC Droid Incredible 2 Sensor 1
HTC G2 Sensor 2
Samasung Nexus S Sensor 1

Table 2.1: Android smartphone devices used across all experiments.

droid at a higher-level application layer which does not expose the underlying Linux

infrastructure. While it is possible to develop applications (or “apps”) that run na-

tive on the Linux core [3] (i.e., compile code to executable binaries to run directly

in the Linux environment), most developers program their applications using Java

and accessing the Android custom libraries [1]. Android Java code is then compiled

to DEX, a custom byte-code that is executed by the Dvalvik virtual machine. For a

general overview of the Android system architecture, please refer to Figure 2.2.

There are a number of security advantages to the Android system design. For one,

the use of Java, a type-safe programming language, limits vulnerabilities via buffer

overflows2. Further, Android enforces strict application sandboxes. Each application

on Android runs within its own Dalvik virtual machine, with limited shared resources,

and as viewed by the Linux core, applications are completed isolated.

Android’s program isolation strategy does not limit applications from communi-

cating with each other or with shared resources. Inter process communication (IPC)

is controlled by intents and a reference monitor that is not isolated by a Dalvik VM.

As such, this communication bypasses most security checks, and as noted in recent

research, enables private information to flow from trusted to untrusted applications,

as we will discuss in Section 5.1. Particularly, IPC enables privilege-escalation at-

tacks [33, 45] that circumvent Android’s permission policy.

Android’s permission policy is an install-time mechanism by which applications

announce which resources, or general phone information, that they will use. During

2Of course, bugs within Dalvik or the DEX compiler can still lead to such vulnerabilities.
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Figure 2.1: Sample of Android permission screen (Source [32])

execution, applications are restricted by the permissions they request. For example,

many applications request permission to access the phone state, which provides in-

formation about if the telephone is in use. Without such permissions, an app would

have no way of learning this information, and thus, applications tend to over-request

permissions. It has been shown that for most applications, if shadow or fake data

is provided instead of privileged data, the applications’ core functionality will be

unaffected [18, 50].

Permission requests are presented to the smartphone user at install-time in a

fairly uninformative format. Even though a user may be aware that an application

can access certain information, it is unclear how that information will be used, nor

would the user be able to easily determine how each of the permissions affect his/her

privacy, security, or usability. Refer to Figure 2.1 for an example of a permission

request screen displayed during application install, and for a complete list of all

permissions see [4].
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Figure 2.2: Android system architecture (Source [7]).

2.2 Android Password Pattern

Android also ushered in one of the first wide-scale deployments of graphical pass-

words [20]. The Android password pattern was the default screen unlock mechanism

on Android prior to the release of the 2.2 version, and following, the password pattern

remains one of three unlock choices, which also include 4-digit PINs and pass phrases.

The Android password pattern is a graphical password scheme where a user tra-

verses an onscreen 3x3 grid of contacts points. First, a user selects a pattern, and

then the user is requested to enter the selected pattern to unlock the phone later.

The user has 20 attempts to recall the pattern, after which, the phone locks down

requiring an additional form of identification before unlocking, such as using a Google

accounts. See Figure 2.3 for the instructions provided by Android on the device.

A pattern can take on a number of shapes and can be defined as an ordered list

of contact points (Figure 2.4 provides an indexing scheme). For example, the “L”

shaped password can be represented as the ordered list 14789, i.e., the user begins

by touching contact point 1, swiping downward towards point 7, and finally across

to point 9. Although a pattern can be entered using two fingers, stepping in order to

simulate a drag from dot-to-dot, it is unlikely common practice because it requires

more effort on the part of the user and is not part of the on-screen instructions

provided by Android.
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Figure 2.3: Android Password Pattern Instructions

There are a three restrictions on acceptable patterns. It must contact a minimum

of four points, so a single stroke is unacceptable. Additionally, a contact point can

only be used once. These two restrictions imply that every pattern will have at least

one direction change, and as the number of contact points increases, more and more

such direction changes are required.

The last, and most interesting, restriction on pattern selection applies to interme-

diate contact points: If there exists an intermediate point between two other contact

points, it must also be a contact point in the pattern, unless, that point was previously

contacted. For example, in the “L” shaped pattern, it must always contain points 4

and 8 even though the ordered list 179 would construct the exact same pattern. If

a user attempted to avoid touching either point 4 or 8, both would be automatically

selected. Conversely, consider a “+” shaped pattern constructed by either the order

list 25846 or 45628, the connected points 46 or 28 are allowed because point 5 was

previously contacted.

Due to the intermediate contact point restriction, the password space of the An-

droid password pattern contains 389,112 possible patterns3. This is significantly

3Due to the complexity of the intermediate contact point restriction, we calculated this result
via brute force methods.
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Figure 2.4: Android password pattern indexing scheme.

smaller than a general ordering of contact points, which contains nearly 1 million

possible patterns. Still, this is a reasonably large space of patterns, but when con-

sidering information leakage of smudge attacks and sensor-based side channels, an

attacker can select a highly likely set of patterns, increasing her chances of guessing

the correct one before the phone locks-out.

Further, we have found that many of patterns are so complicated they are es-

sentially unusable. In our experiments, when selected patterns at random, we rarely

encountered a pattern that we could reliably enter, i.e., within a few attempts. Of-

ten, they were convoluted, requiring sharp direction changes and backtracking, and

our volunteer users commented on the patterns’ difficulty. As a result, we developed

some restrictions on pattern selection for our sensor-based side channel experiments,

discussed in Section 4.5.

It is unclear how many patterns are actually human-usable, and determining the

human selection criteria for patterns remains an open area of research. Based on

our experiences, we hypothesize that there is at least an order of magnitude fewer

usable patterns than the total available patterns. Studies of other graphical pass-

words and human selection criteria suggest that people choose graphical passwords

as poorly [109, 108] as they choose traditional passwords [59, 77].
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Sensor Type Description Num. Values Units
Accelerometer Measuring acceleration accounting for gravity 3 m/s2

Ambient Temperature Measuring ambient (room) temperature 1 Celsius
Gravity Indicates direction and magnitude of gravity 3 m/s2

Gyroscope Measures angular speed of rotation 3 r/s
Light Measures ambient light levels 1 lux
Linear Acceleration Measure acceleration without accounting for gravity 3 m/s2

Magnet Field Measures ambient magnet field in x, y, and z axis 3 uT
Orientation Measure yaw, pitch and roll of device 3 degrees
Pressure Measures atmospheric pressure 1 hPa
Proximity Measure proximity to other proximity sensor 1 cm
Relative Humidity Measures relative ambient air humidity 1 percent
Rotation Vector Measures rotation angle θ about an axis < x, y, z > 4 radians

Table 2.2: Android sensors and descriptions (Source [5, 6])

2.3 Smartphone On-Board Sensors

Android smartphones ship with a wide array of sensors for measuring the devices

environment. In Table 2.2, a list of sensors and descriptions is presented as described

in [5, 6]. Not all smartphone devices have access to the same set of sensors and at

the same sample rate, dependent on the device’s chipset and version of Android.

Of particular importance to this thesis are the movement sensors: the accelerom-

eter, linear acceleration, gyroscope, orientation, and rotation vector sensors. In our

study, we show that sensor readings from the linear acceleration sensor can be used to

infer user input; in related studies, others have shown that the gyroscope, orientation,

and rotation vector sensors can be used to infer input as well [25, 117]. We discuss

each of the sensors in more detail throughout this thesis where appropriate.

It should be noted that movement sensors have been investigated in a wide variety

of tasks and applications beyond side channels. For example, there has been many

proposals for using movement sensors as user interface enhancements [66, 72, 89] and

as a source of data mining investigations [17, 66, 75, 94, 95]. Perhaps more relevant

is the applications of movement sensors as a biometric identifier for user authentica-

tion [34, 74, 47, 30, 71, 65]. As we will show later in the thesis, the accelerometer

is capable of surreptitiously inferring user input, but on-board sensor readings could

also be used for other purposes, such as enhancement to the authentication procedure.
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Chapter 3

Smudge Attacks on Smartphone

Touchscreens

In this chapter, we present our investigation of an externally observable side channel:

the smudge attack. This side channel leverages forensic evidence remaining on the

touchscreen after a user provides secure input. The act of gesturing on the touchscreen

transfers epidermal oils from the user’s fingers to the screen surface, and these residual

smudges forensically inform an attacker of the input provided. When the user provides

secure input, a smudge attack constitutes a significant side channel.

3.1 Introduction

Touchscreens and modern smartphones are linked, and some would even argue that

the touchscreen interface enables the current revolution in ever smaller and powerful

computing devices. Touchscreens are incredibility intuitive: Users are able to com-

plete complex tasks by simply touch-gesturing on the screen surface. But touchscreens

are physically touched, so oily residues, or smudges, are transferred from users’ fin-

gers to the screen surface. Latent smudges provide forensic evidence of previous user

interaction, revealing previous user input – a form of information leakage. If a user’s
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previous input was sensitive, the leakage constitute a significant side channel.

We describe this side channel as a smudge attack, and it is an example of externally

observable attacks that result from the touch screen interaction layer promoted by

smartphones. Such information leakage is not accounted for in current security models

of smartphones, and in this chapter, we explore the feasibility of the smudge attack.

Particularly, we hypothesize that smudges are easily captured under a wide variety

lighting and camera settings, and if a smudge is present, there is sufficient information

to learn about previous input.

To test this hypothesis, we focus on latent smudges that occur following a user

unlocking his/her phone using Android’s graphical password scheme, the password

pattern. We conduct a number of experiments, first exploring the ideal and less-than-

ideal settings for photographically capturing a smudge on a smartphone. Following,

we investigate the persistence of smudges, considering how long they remain on the

touchscreen surface and how easily they are obscured by both smudge noise caused

by other applications and smudge removal caused by incidental clothing contact.

The results of our experiment are extremely encouraging: In one experiment, the

password pattern is partially identifiable in 92% and fully in 68% of the tested lighting

and camera conditions. Even in our worst performing experiment, under less than

ideal pattern entry conditions, the pattern can be partially extracted in 37% of the

setups and fully in 14% of them. We also found that the effects of application noise

(smudges from using other application on the phone) is limited, unless the entire

touchscreen surface is covered with spurious smudges.

Through this investigation, we found that the first part of our hypothesis is well

supported: Smudges are easily captured in a wide variety of settings. We also found

that the second part of the hypthesis is well supported for attacks on the password

pattern: Smudges have the potential to reveal substantial information about users’

previous input. To summarize some the results, below are key factors we identified

regading smudges on touchscreens that increase the threat of smudge attacks:
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• Smudges are surprisingly persistent in time: Smudges remain on the

touchscreen surface for a long time. One smartphone in our study retained

a smudge for longer than a month without any significant deterioration in an

attacker’s collection capabilities.

• Smudges are surprisingly difficult to incidentally obscure or delete

through casual use of the phone: In one part of the study, we placed

and removed a phone from a users pocket multiple times without significant

detriment to the clarity of the smudge. We also casually wiped the phone on

a paints leg, as one might do if the screen was dirty, and still the smudge was

reasonably legible.

• Collecting and analyzing smudge images is easy to do with readily-

available equipment such as a standard digital camera and a com-

puter. Although, We took photographs using a commercial grade camera and

used commercial image editing suite, neither is required to perform a smudge

attack. We additionally took photographs using standard “point-and-shoot”

camera that were more than sufficient, and only standard lighting and color

contrast adjustments are required for the photo editor. The editing software

and camera on most smartphones is fully capable of performing a smudge at-

tack.

When considering mitigation strategies for smudge attacks, we argue that the

most important factor is user awareness, as is the case for most forensic information

leakage (such as “should surfing”). With knowledge of the potential threat, users are

more likely to ensure that their touchscreen does not reveal sensitive smudges. Of

course, technological advances in touchscreens that increase smudge resistance could

also reduce the threat of smudge attack.

We also argue that any mitigation strategy should account for the side-effects

of the security mechanisms of choice. When designing security systems to be used
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on touchscreens, one should consider both the security of the security mechanims

(e.g., the difficulty of guessing a pattern) and the security of providing secure input

on the touchscreen (e.g., the effects of latent pattern smudges). Below, we outline a

number of security issues for the Android password pattern that render it particularly

susceptible to this attack.

• Password patterns smudges can be differentiated from other appli-

cation smudges: The requirements of the password pattern and that it is

limited to a fixed location on the screen affect residual smudges such that they

are fairly unique when compared to general application smudges.

• Repeated pattern entry: The Android password pattern must be entered in

whenever the smartphone is used, and thus, the likelihood of a pattern smudge

on the touchscreen is relatively high.

• Significant human factors: From our experiences, we posit that there is

significantly fewer “usable” patterns than the total available patterns. We found

that many password patterns were very difficult to enter reliably, requiring

convoluted traversals, and were generally hard to remember.

As a comparison, consider PINs and their residual point-touch smudges: PIN

smudges would be harder to distinguish from other application point touch smudges;

PIN smudges would be disconnected, and thus it would be unclear the ordering; and,

although users do not select PINs uniformly, the human factors involved are much

better understood [22].

In the rest of this chapter, we first discuss the threat model and methodology

we apply to measuring the feasibility of the smudge attacks. Following, we discuss

the properties of the password pattern, the experimental setup, and the experimental

results. We conclude the chapter with a discussion of methods for exploiting smudge

attacks and mitigating them.
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3.2 Threat Model

The goal of an attacker wishing to perform a smudge attack is to learn about secure

user input using photographic evidence. The attacker can inspect an image (or the

device itself) to learn this information. In this section of thesis, our investigation of

the hypothesis can be reformatted in two key questions: How likely is the attacker

to learn something from a random image of a smartphone? Given the information

learned, how can the attacker apply it to learning the secure input? Particularly, this

thesis focuses on the Android password pattern; however, other secure input types,

including PINs and passwords are susceptible to a smudge attack. As we will discuss

in the next section, the password pattern, particularly, is much more susceptible to

a smudge attack because of its graphical nature.

We consider two styles of attacker, passive and active. A passive attacker operates

at a distance, while an active attacker has physical control of the device. A passive

attacker who wishes to collect smartphone touchscreen smudges may control the

camera angle, given the attacker controls the camera setup, but the smartphone is

in possession of its user. The attacker has no control of the places the user takes the

smartphone, and thus cannot control lighting conditions or the angle of the phone

with respect to the camera. The attacker can only hope for an opportunity to arise

where the conditions are right for good collection. An active attacker, however, is

capable of controlling the lighting conditions and is allowed to alter the touchscreen

to increase retrieval rate. This could include, for example, cleaning the screen prior

to the user input, or simply moving the touchscreen to be at a particular angle with

respect to the camera.

For the purposes of our experiment, we make a strong assumption about the

attacker’s “activeness;” she is in possession of the device, either surreptitiously or by

confiscation, and is capable of fully controlling the lighting and camera conditions to

extract information. We believe such an attacker is within reason considering search

and seizure procedures in many countries and states. However, a passive smudge
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attack, e.g., via telephotography, can still be useful in a later active attack, where

the touchscreen device becomes available to the attacker at some later point in time.

The information obtained will often still be fresh – users tend to leave their passwords

unchanged unless they suspect a compromise [35] – encouraging multiphase attack

strategies.

3.3 Password Patterns and Smudge Attacks

We refer the reader to Chapter 2 for a more comprehensive description of the Android

password pattern. Here, we review the important aspects of the pattern interface that

enables smudge attacks.

The Android password pattern is one of three unlock mechanisms provided by An-

droid, which include PINs and passwords in addition to the password pattern. Prior

to the release of Android 2.2 [2], the password pattern was the only unlock mecha-

nism available. And still, anecdotal evidence suggests that most casual users prefer

the pattern over other unlock mechanisms; however in corporate settings, passwords

or PINs are likely preferred for added security.

The Android password pattern is a graphical passwords scheme where the user is

instructed to “draw” a pattern over a 3x3 grid of contact points. Patterns are entered

by maintaining contact with the screen and traversing the contact points to form a

pattern. With a contact point indexing scheme (see Figure 3.1), a pattern can be

defined as an ordered list of contact points. For example the “L” shaped pattern can

be defined as 14789. Each grid point may only be contacted once, and the user must

contact at least 4 points to form a pattern, thus there is at least one direction change

in the pattern. This is an important property of patterns that aids in differentiating

its smudge from other residual smudge caused by general application usage.

For example, consider a standard application, such as an email application. The

primary interaction gestures include touching the screen to select an item (point-

touching) or scrolling (swipe-gesturing). Neither of these actions have the same
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Figure 3.1: An illustration of the Android password pattern screen with overlaid
identification numbers on contact points.

properties as a password pattern. In contrast, a pattern will contain at least one

sharp direction change, and likely more with longer patterns. Further, these di-

rection changes are angled with respect to the location of the contact points, and,

finally, the swipes are connected because the user must maintain contact with the

screen while entering the pattern. The result is a very different style of smudge from

general application usage. We investigate the effects of application usage further in

later sections.

Another differentiating factor for pattern smudges and application smudges is the

fact that a user must continually enter their pattern throughout the day. Every time

the phone is locked, the pattern must be entered, and the phone locks whenever the

power button is pressed or when the phone times out. So: the likelihood of a pattern

smudge being present is relatively high. The phone will even time out during a long

phone call, after which, if the user wishes to access the phone, he/she must enter

his/her pattern. This scenario is important because a smartphone is also a phone,

and when considering application noise, we found that post phone calls, when the

smartphone is impressed upon the cheek of its owner, it is easiest to extraction the

smudge because of contrast to the background, which is already partially smudged

by contacting the user’s cheek.
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As discussed in Chapter 2, there are subtle restrictions on patterns, particularly

the intermediate point restriction, which reduces the set of available patterns. One

might expect that there are at least a million possible patterns — a general order of

contact points provides 997,920 possible patterns — but in fact there is a relatively

smaller set of 389,112 possible pattern. While this may still seem like a large set, it is

a 60% reduction in search space to just a general ordering. Granted, there is still 39x

more password patterns than PINs, of which there are only 10,000 possible 4-digit

PINs. As we will discuss later, information drawn from a smudge attack can greatly

reduce the search space for victim’s pattern.

Human selection criteria for password patterns must also be considered in a

smudge attack. Although, it may be possible to extract the exact pattern from a

smudge, often only partial information is available. While the search space for a pat-

tern is clearly reduced with partial information, additional human factors can come

to bear.

In our experience working with the password pattern, most of the available pat-

terns are completely unusable. Often, a pattern contains awkward swipes that require

careful traversal to enter correctly, or are convoluted, requiring doubling back and

other complex forms1. Even experienced Android and pattern users were not able

to enter these patterns reliably (e.g., within 5 attempts), and thus, we would expect

that users would shy away from using them as their unlock pattern. As such, we

hypothesize that the real set of patterns being used by real people is much fewer than

the available number of patterns. And since more secure mechanisms are available

on Android to lock the phone, users who do use password pattern are likely less

concerned with the security of their device and more concerned with convenience of

keeping casual “snoopers” at bay while still being able to easily and reliably unlock

their phone.

1In Chapter 4 we discuss our experimental setup for selecting patterns at random to test sensor-
based side channels, and our volunteers responded that most random patterns were too hard to
enter reliably.
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3.4 Experimental Setup

In this section we present our experimental setup for capturing smudges from smart-

phone touchscreens, including a background on photography and lighting. We ex-

perimented with two Android smartphones, the HTC G1 and the HTC Nexus 1,

under a variety of lighting and camera conditions. We also experimented with simu-

lated phone application usage and smudge distortions caused by incidental clothing

contact.

Photography and Lighting

This thesis primarily investigates the camera angles and lighting conditions under

which latent “smudge patterns” can be recovered from touchscreen devices. The

fundamental principles of lighting and photographing objects of various shapes and

reflective properties are well understood, being derived from optical physics and long

practiced by photographers. But the particular optical properties of smartphone

touchscreens and the marks left behind on them are less well understood; we are

aware of no comprehensive study or body of work that catalogs the conditions under

which real-world smudges will or will not render well in photographs of such devices.

A comprehensive review of photographic lighting theory and practice is beyond

the scope of this thesis; an excellent tutorial can be found, for example, in [51]. What

follows is a brief overview of the basic principles that underlie our experiments. In

particular, we are concerned with several variables and questions:

• Screen Reflection: How does the reflective properties of the touchscreen affect

the ability to retrieve a viable smudge?

• Quality of Lighting: How does the quality and location of the light source

affect the ability to retrieve a viable smudge?

• Location of Camera: How does the location of the camera with respect to

the location of the smartphone affect the ability to retrieve a viable smudge?
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Object surfaces react (or do not react) to light by either reflecting it or diffusing

it. Reflective surfaces (such as mirrors) bounce light only at the complementary

angle from which it arrived; an observer (or camera) sees reflected light only if it is

positioned at the opposite angle. Diffuse surfaces, on the other hand, disperse light in

all directions regardless of the angle at which it arrives; an observer will see diffused

light at any position within a line of site to the object. The surfaces of most objects lie

somewhere on a spectrum between being completely reflective and completely diffuse.

In our experiences, we found that smartphone screens are much more reflective than

diffuse; in fact, the most common reason for smudge non-retrieval was complementary

lighting and photographic angles such that the light source reflects directly into the

camera, washing out the image.

Lighting sources vary in the way they render an object’s texture, depending on

both the size and the angle of the light. The angle of the light with respect to the

subject determines which surfaces of the object are highlighted and which fall in

shadow. The size of the light with respect to the subject determines the range of

angles that keep reflective surfaces in highlight and how shadows are defined. Small,

point-size lights are also called hard lights; they render well-defined, crisp shadows.

Larger light sources are said to be soft; they render shadows as gradients. Finally, the

angle of the camera with respect to the subject surface determines the tonal balance

between reflective and diffuse surfaces.

These standard principles are well understood. What is not well understood, how-

ever, is the reflective and diffuse properties of the screens used on smartphone devices

or of the effects of finger smudges on these objects. We conducted experiments that

varied the angle and size of lighting sources, and the camera angle, to determine the

condition under which latent smudge patterns do and do not render photographically.
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Photographic Setup

Our principle setup is presented in Figure 3.2 and Figure 3.3. We use a single light

source (either soft, hard lighting, or omnidirectional lighting via a lighting tent)

oriented vertically or horizontally. A vertical angle increments in plane with the

camera, while a horizontal angle increments in a perpendicular plane to the camera.

All angles are measured with respect to the smartphone.

Vertical angles were evaluated in 15 degree increments, inclusively between 15

and 165 degrees. Degree measures are complementary for vertical and lens angles.

For example, a lens angle of 15 degrees and a vertical angle of 15 degrees are exactly

complementary such that light reflects off the touchscreen into the camera like a

mirror. Horizontal angles were evaluated inclusively between 15 and 90 degrees as

their complements produce identical effects. Similarly, we only consider camera angles

between 15 and 90 degrees, inclusively; e.g., a vertical and lens angle both at 105

degrees is equivalent to a vertical and lens angle both at 15 degrees with just the light

and camera switch. Additionally, when the lens angle is at 90 degrees, only vertical

lighting angles of 15 to 90 degrees need consideration2. Finally, for omnidirectional

light only the lens angles need to be iterated as light is dispersed such that it seems

it is originating from all possible angles.

In total, there are 188 possible setups. For the base lighting condition, hard or soft,

there are 11 vertical and 6 horizontal angles for 5 possible lens angles, not including

the 90 degrees lens angle which only has 6 possible setups. With the addition of 6

lens angles for omnidirectional lighting, that leaves 188 = 2(5 × 17 + 6) + 6 setups,

but there is still overlap. A 90 degree angle vertically and horizontally are equivalent,

resulting in 178 unique setups.

2We do not consider 180 or 0 degree angles, which cannot provide lighting or exposure of the
smudges.
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Figure 3.2: Principle Photographic Setup: The lighting and camera conditions at
various vertical lighting angles (in plane with camera), horizontal lighting angles (in
perpendicular plane with camera), and lens angles with respect to the smartphone.

Equipment Settings

We used relatively high-end precision cameras, lenses, lighting, and mounting equip-

ment in our experiments to facilitate repeatability in our measurements. However,

under real-world conditions, similar results could be obtained with much less elabo-

rate (or expensive) equipment and in far less controlled environments.

All photographs were captured using a 24 megapixel Nikon D3x camera (at ISO

100 with 16 bit raw capture) with a tilting lens (to allow good focus across the entire

touchscreen plane). The camera was mounted on an Arca-Swiss C-1 precision geared

tripod head. The large (“soft”) light source was a 3 foot Kino-Flo fluorescent light

panel; the small (“hard”) light was a standard cinema “pepper” spotlight. For single

light experiments, the directional light was at least 6 stops (64 times) brighter than

ambient and reflected light sources. For omnidirectional lighting, we used a Wescott

light tent, with light adjusted such that there was less than a 1 stop (2x) difference

between the brightest and the dimmest light coming from any direction. All images

were exposed based on an incident light reading taken at the screen surface.
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Figure 3.3: Photographic setup in practice: Matt Blaze taking a photo using a dif-
fuse/soft light source at a angle of 90 degrees and a camera angled at 60 degrees.

Pattern Selection and Classification

In all experiments, we consider a single pattern for consistency, presented in Fig. 3.4.

We choose this particular pattern because it encompasses all orientation and nearly

all directions, with the exception of a vertical streak upwards. The direction and

orientation of the pattern plays an important role in partial information collection.

In certain cases, one direction or orientation is lost.

When determining the effectiveness of pattern identification from smudges, we use

a simple classification scheme. First, two independent ratings are assigned on a scale

from 0 to 2, where 0 implies that no pattern information is retrievable and 2 implies

the entire pattern is identified. When partial information about the pattern can be

observed, i.e., there is clearly a pattern present but not all parts are identifiable, a

score of 1 is applied. Next, the two independent ratings are combined; we consider a

pattern to be fully identifiable if it receives a rating of 4, i.e., both classifiers indicate

full pattern extraction3.

3 We note that this rating system can lead to bias because the same pattern is used in every
photograph. Specifically, there may be projection bias; knowing that a smudge streak is present,
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Figure 3.4: Password pattern used for captures – pattern 215368479. This pattern
contains swipes in all orientations and most directions, except for an upward swipe.

We also wished to consider the full extent of an attacker, so we allow our classifiers

to adjust the photo in any way possible. We found that with a minimal amount of

effort, just by scaling the contrast slighting, a large number of previously obscured

smudges become clear. Additionally, all the image alterations performed are equiv-

alent to varying exposure or contrast settings on the camera when the image was

captured. In Figure 3.5, we show an image prior and post contrast adjustment and

the effect it has on smudge clarity.

3.5 Experiments

In this section, we present our experiments to test the feasibility of a smudge attack

via photography. We conducted three experiments: The first experiment considers

ideal scenarios, where the touchscreen is clean, and investigated the angles of light

and camera that produce the best latent images. The results of the first experiment

inform the later ones, where we simulate application usage and smudge removal based

on contact with clothing.

the classifier projects it even though it may not necessarily be identifiable. We use two independent
classifiers in an attempt to alleviate this bias and only consider full pattern retrieval if bother
classifiers rate with value 2.
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Figure 3.5: Phone D from Experiment 1, prior to and post contrast adjustment:
In many situations, adjusting the levels of color or contrast can highlight a smudge
previously obscured. The images on the left and right are identical.

Experiment 1: Ideal Collection

The goal of this experiment was to determine the conditions by which an attacker can

extract patterns, and the best conditions, under ideal settings, for this. We consider

various lighting and camera angles as well as different styles of light.

Setup. In this experiment we exhaust all possible lighting and camera angles. We

consider hard and soft lighting as well as completely disperse, omnidirectional lighting,

using a total of 188 photographs in classification. We experiment with four phones

with different qualities of pattern entry, referred to by these letter identification:

• Phone A: HTC G1 phone with the pattern entered using “normal” touches

• Phone B: HTC G1 phone with the pattern entered using “light” touches

• Phone C: HTC G1 phone with the pattern entered after the phone has been

held in contact with a face, as would happen after a phone call
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Figure 3.6: Cumulative Fraction Graph for Experiment 1: For each rating and phone,
the cumulative fraction of photos scoring that rating, or higher.

• Phone D: HTC Nexus 1 phone with pattern entered using “normal” touches

The difference between “normal” touching and “light” touching is in the purpose-

fulness with which the user enters the password pattern. Under normal touching, the

user enters the pattern as normal, by applying his/her finger to the touchscreen to

traverse the pattern. However, in light touching, the user purposefully lightly touches

the screen, still using his/her finger, but with much less emphases.

We do not claim that normal and light touching scenarios map exactly to how

users enter their patterns in reality, but rather that they are examples of the range of

possible scenarios. In one scenario, normal touching we should expect relatively easy

pattern retrieval, and in the other, light touching, we should expect relatively more

difficult retrieval. This was the case in the results presented below.

Of course, it may be the case that a smudge would not be present after pattern

entry at all, such as might be the case in dry enviroments or if the user is wearing

special tactile gloves. This study is interested in the capabilities of an attacker per-
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Figure 3.7: An image from Experiment 1: All four phones clearly displayed the
pattern without the need to adjust contrast. Even the lightly touched Phone B
(lower-right) has a visible pattern.

forming a smudge attack on a phone with a known smudge present. Measuring how

frequently smudges occur under different weather and user conditions is beyond the

scope of this thesis. However, in our experience, as will be shown with light touches,

even if a smudge is not perceived by the naked eye, modulating the contrast of the

image can reveal the entire pattern or at least some partial information.

Results. As described previously, each photograph is rated by the combination of

two unique ratings on a scale from 0 to 2, which when combined provide a rating

on a scale between 0 and 4. The key results of this classification are presented in

Figure. 3.6 as a cumulative fraction graph, and in Figure 3.7 a sample photograph is
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Figure 3.8: An image of Phone C from Experiment 1: The broad background smudge
caused by contact with the face contrasts with the smudging cuased by pattern entry.

presented.

The pattern that is most easily identifiable is Phone C, where the phone is first

placed on a face prior to pattern entry. In roughly 96% of the photographic setups,

a partial pattern is retrievable (i.e., a rating of at least 1), and in 68% of the setups,

the complete pattern is retrieved (i.e., a rating of 4).

In contrast to the other tested phones, Phone C is dirty prior to password entry

as broad smudging occurred due to contact with facial skin. Entering the pattern

on top of this broad smudge contrasts greatly with the pattern entry smudges (see

Figure 3.8). We explore this phenomenon further in Experiment 2. It is important

to note that entering a pattern after a phone call is likely common because most

conversations are longer than the phone lockout period. If a user wants access to

other applications post hang-up, the user will have to enter the unlock pattern.

Phone B is the worst performing pattern entry. In this case, the pattern is en-

tered using light touching, yet in over 30% of the setups, some partial information is
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Figure 3.9: An image from Experiment 1: Complimentary lighting and lens angle
causes significant glare, leading to unidentifiable patterns and information loss.

retrievable. Moreover, in 14% of the photographs, the complete pattern is retrievable.

By far the best lens angle for retrieval is 60 degrees (followed closely by 45 de-

grees). In more than 80% of the lighting scenarios with a 60 degree lens, perfect or

nearly perfect pattern retrieval is possible with a 60 degree camera angle. The worst

retrieval was always when the vertical and lens angle were complimentary which trans-

formed the touchscreen surface into a mirror, effectively washing out the smudges (see

Figure 3.9 for one such example). Additionally, omnidirectional light (i.e., using the

light tent), had a similar effect. Omnidirectional light implies that there always exists

a perfect reflection into the camera as light is emitted from all angles.

The most interesting observation made from the photographs is that in many of

the setups, the directionality of the smudges can be easily discerned. That is, the

order of the strokes can be learned, and consequently, the precise pattern can be

determined. As an example see Figure 3.10. At each direction change, a part of the

previous stroke is overwritten by the current one, most regularly at contact points.
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Figure 3.10: Phone A, from Experiment 1, where the pattern is entered with normal
touches. Notice that the directionality of the pattern can be determined at ever
direction change.

On close inspection, the precise order of the contact points can be clearly determined

and the pattern becomes trivially known.

Experiment 2: Simulated Usage

In this experiment, we were interested in the effect that user applications have on the

capabilities of an attacker. Previously, we demonstrated that talking on the phone

may increase the contrast between a pattern smudge and the background; we further

elaborate on that point here. Additionally, we investigate the effect of application

usage as it may occur prior to or post pattern entry.

Setup. The setup of this experiment was informed by the results of the previous

experiment. We photographed the phones at a 45 degree lens angle and at three

of the best vertical angles: 15, 75, and 90 degrees. Although 60 degrees lens angle

performed best overall, the setup required for 45 degrees was much simpler and had

similarly good results at these vertical lighting angles.

We based our usage simulation on a phone application; an application installed

on all Android smartphones. Although the phone application is not representative
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Figure 3.11: An image from Experiment 2: Even with background noise (over, on the
left, and under, on the right of the pattern entry), either partial or complete pattern
identification is possible as it contrast with such usage noise. The contrast on this
images has been adjusted.

of all application usage, it has some important characteristics present in nearly all

applications. If a user were to enter a phone number it would require a sequence

of presses, or smudge dots, on the screen. A user could also scroll her contact list,

causing up and down smudge streaking, or left and right, depending on the phones

current orientation. Additionally, there may be combinations of these.

For each phone in the experiment – two G1 phones and two Nexus 1 phones – we

consider 4 usage scenarios:

• Grid of smudge dotting: Smudge dots are pressed in a grid format of roughly

the same size as a telephone keypad. This considers a user who touches all keys

on the keypad at some point during his/her phone conversation, as might be

the case if he/she is using an automated telephonic-customer service.

• Hash of streaks: Smudge streaks are added in the form of a hash consisting

of 3 equally spaced up-down and 3 equally space left-right streaks. This is a
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G1 Nexus 1
App. Noise over under over under

dots 4 4 2.7 3.7
streaks 3 2 3 3

dots & steaks 3 1.6 4 3
face 4 2.3 4 2

Table 3.1: Results of Experiment 2: The average rating with application usage for
patterns entered over and under the application noise.

extreme scenario where the user is scrolling in the contacts while holding the

phone in one hand, then the other, and in multiple orientations.

• Hash and grid: Smudge streaks and dots are combined as indicated before.

Here is an absolute worst case scenario for an attacker concerened with appli-

cation noise.

• Face contact: As before, broad smudging is added due to contact with the

face while placing a phone call.

We also consider if the pattern was entered prior to application usage (i.e., the

pattern is first entered, and then the steaks and/or dots are applied) or post ap-

plication usage (i.e., first steaks and/or dots are applied followed by the pattern).

Note that as a follow up to Experiment 1, we also consider the effect of placing the

touchscreen surface to the face, before and after pattern entry. In all pattern entries,

we assume normal touching.

Results. As before, each photograph was classified by two individuals, and the

combined results are considered. The results are summarized in Table 3.1 and a

sample image is available in Figure 3.11. In general, entering the pattern over the

usage smudges is more clearly retrieved, as expected. Dots also tend to have less of

an effect than streaks, again as expected.

Interestingly, the over pattern entry for the combination of dots and streaks on

the Nexus 1 scored perfect retrieval (see Figure 3.12 for a sample image). Upon closer

37



Figure 3.12: A phone from Experiment 2: The pattern contrasts greatly with the
background noise; a grid of dots. The contrast on this image has been adjusted.

inspection, this is due to the intricacy of the pattern – the many hooks and turns

required for such a long pattern – created great contrast with usage noise, and thus

the pattern was more easily retrieved. Finally, as expected based on the results of

Experiment 1, broad smudging on the face provided perfect retrieval for the over case,

and even in the under case, partial information was retrieved.

When inspecting the images from this experiment, what becomes clear is that

dots and streaks are very different smudges than that of patterns. For example,

consider Figure 3.12: Here the pattern is entered on top of the grid of dots, and it is

straightforward to differentiate the two. Again, in Figure 3.11, the hash of streak can

affect the clarity of the smudge, but the up-down and left-write smudges look very

different than the connected and angled pattern smudge.

Experiment 3: Removing Smudges

In this experiment we investigated the effects of smudge distortion caused by inci-

dental contact with or wiping on clothing.
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Figure 3.13: Phone from Experiment 3, where the phone was wiped, placed (and
replaced) in a pocket, and although the pattern is still visible, directionality is lost.

Setup. Using the same photographic setup as in Experiment 2, we photographed

two clothing interference scenarios, both including placing and replacing the phone

in a jeans pocket. In the first scenario, the user first intentionally wipes the phone,

places it in her pocket, and removes it. In scenario two, the user places the phone in

her pocket, sits down, stands up, and removes it.

Although this does not perfectly simulate the effects of clothing contact, it does

provide some insight into the tenacity of a smudge on a touchscreen. Clearly, a user

can forcefully wipe down her phone until the smudge is no longer present, and such

scenarios are uninteresting. Thus, we consider incidental distortion.

Results. Surprisingly, in all cases the smudge was classified as perfectly retrievable.

Simple clothing contact does not play a large role in removing smudges. However, on

closer inspection, information was being lost. The directionality of the smudge often

could no longer be determine (see Figure 3.13 for an example). Incidental wiping

disturbed the subtle smudge overwrites that informed directionality. Even in such

situations, an attacker has greatly reduced the likely pattern space to 2; the pattern

in the forward and reverse direction.
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Summary

Our photographic experiments suggest that a clean touchscreen surface is primarily,

but not entirely, reflective, while a smudge is primarily, but not entirely, diffuse. We

found that virtually any directional lighting source that is not positioned exactly at

a complementary angle to the camera will render a recoverable image of the smudge.

Very little photo adjustment is required to view the pattern, but images generally

rendered best when the photo capture was overexposed by two to three f-stops (4 to

8 times “correct” exposure).

If the effect of the smudge is to make a chiefly reflective surface more diffuse, we

would expect completely even omnidirectional light to result in very poor rendering

of the image. And indeed, our experiments confirm this – even extensive contrast

and color adjustment was generally unable to recover the smudge pattern from im-

ages captured under omnidirectional light under the light tent. Fortunately for the

attacker, however, most “real world” lighting is primarily directional. The main prob-

lem for an attacker who wishes to surreptitiously capture a smudge pattern is not

application noise or incidental clothing contact (as Experiment 2 and 3 showed) but

rather ensuring that the angle of the camera with respect to the screen surface is not

at an angle complementary to any strong light source.

3.6 Directions for Exploitation

We have demonstrated the ability of an attacker to capture information from smudges

via photography. We now discuss how the information gained can be use to defeat

the Android password pattern. As presented in Sec. 3.3, the size of the pattern space

contains 389,112 distinct patterns. A significant number of those patterns can be

eliminated as possible passwords by a smudge attacker. For example, perfect pattern

retrieval with directionality is possible, reducing the possibilities to 1. Partial retrieval

of patterns from smudges requires deeper analysis, towards which we present initial

thoughts on exploiting captured smudges.
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Figure 3.14: Phone from Experiment 1: One stroke of the pattern, 84, is lost due to
the camera or lighting angle. The contrast has been adjusted.

Using Partial Information

Using the photographs taken during our experiments, we investigated what was lost

in partial retrieval scenarios. Two cases emerged: First, a lack of finger pressure

and/or obscuration of regions of the photograph led to information loss.

As an example of partial information recovery and the attacker’s inference oper-

ation in this scenario, consider Figure 3.14. Presented is Phone D, the HTC Nexus

1 with normal touching, and the image’s contrast has been adjusted so that the

smudge is visible. Note that the stroke connecting contact point 8 and 4 is not vis-

ible. Nonetheless, the attacker can learn a lot from this image. For one, the zig-zag

upper portion of the smudge is fairly unique for pattern entry; recall that connected

swipes like these are not particularly likely with general application usage. However,

the provenance of the bottom portion of the smudge is less clear and the downward

stroke from 4 to 7 is not fully visible.

Yet, it is important to ask: How many possible patterns are present in this image?
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With a lack of directionality, the attacker cannot determine if the top smudge begins

at point 2 or point 8; so, there are two possible patterns, one starting in either

location.

It could also be the case that the bottom single left-right swipe (between points

7 and 9) connects with the upper portion since the up-down swipe (between points

4 and 7) is unclear. However, due to the overlap at point 8, where the top smudge

intersects the bottom smudge, there would need to be a double back swipe to connect

the bottom, left-right smudge via point 8. That is, the user would need to first

traverse towards point 7 from point 8, and then from point 7 to point 9, or in reverse.

Although, this image does not present much evidence of this, but for a conservative

estimate, the attacker can add more patterns to his set of possible patterns, which now

totals 4. More precisely, the possible patterns are now: 215368, 863512, 21536879,

21536897. Note that the pattern 79863512 and 9786512 are not possible because of

the intermediate point restriction, and the patterns 87963512 and 89763512 are not

supported by the image, both would require smudges that are not present or would

conflict with smudges that are.

Still, the true pattern (215368479) is not in the attacker’s set, but the 4 possible

patterns is way below the guessing threshold of 20. The attacker can therefore include

the up-down smudge between point 4 and 7 in his/her calculation. Näıvely including

the swipe between 4 and 7 without considering the loss of the swipe between 8 and

4, only provides one additional pattern, 215368974. Other possible patterns that

connect the up-down smudge are restricted by the intermediate point restriction,

e.g., pattern 479863512. The attacker is now considering only 5 possible patterns.

Finally, the attacker can include smudges that may be missing due to photography.

In this photo, only one such swipe could possibly be missing since all other contact

points seem connected; namely, the swipe between 4 and 8. Including that swipe now

brings the total number of possible patterns to 7, including patterns 215368479 and

974863512, a very tractable set of patterns for initial guesses.

The second scenario of partial information is much harder on an attacker. If there
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Figure 3.15: Phone from Experiment 2: With this usage condition (dot and streaks,
under), the pattern is nearly all lost. The contrast has been adjusted.

is significant amount of application usage noise, the attacker would find it difficult to

differentiate between the pattern portion and the application portion of the smudges.

Consider Figure 3.15: This is a photo from Experiment 2 with dots and streaks over

the pattern entry. An attacker may guess that two sets of “V” style diagonals are

present from the pattern since they do not fit the style of applicaiton noise one might

expect. However, in general the entire pattern is not observable. Moreover, using

this information is not likely to reduce the pattern space below the threshold of 20

guesses.

If an attacker has access to many images of the same pattern captured at different

points in time. By combining this information, it may be possible for an attacker

to recreate the complete pattern by data fusion [49]. As an example, consider an

attacker combining the knowledge gained from the Figure 3.14 and Figure 3.15; if it

was known that the same pattern was entered, the bottom “V” shape in Figure 3.15

is enough information to finish the pattern in Fig. 3.14.
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Figure 3.16: A 30 degree pattern swipe, in yellow, that is difficult to enter when
points 4 and/or 5 are previously uncontacted, as indicated by the dashed red swipe.

Human Factors

Human behavior in password selection has been well studied [59, 77], and even in the

graphical password space, password attack dictionaries based on human mnemonics

or pattern symmetry have been proposed [109, 108]. Similar behaviors seem likely

to emerge in the Android password space, greatly assisting an attacker.

As we have discussed previously, we are unaware of any previous study on human

selection factors for the Android password pattern, and based upon our experience

using the password pattern, we conjecture that the ease of pattern entry is an impor-

tant factor when users select their pattern, not necessarily security. If the password

pattern is too difficult to enter consistently, then it is less usable and therefor less

likely the user’s chosen pattern.

As an example of difficult patterns to enter, consider the swipe that connects

point 1 and 8 in Figure 3.16. No matter how careful a user is, the chances of striking

point 4 or 5 (if previously untouched) while traversing from point 1 and 8 is fairly

high4.

4Personally, the author of this thesis attempted to do so many times throughout the course of
this study (and in later studies) and was successful less then half the time. Granted, this experience
may not be the same for all users.
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If we do not consider patterns with such difficult swipes unless at least one “haz-

ardous” point is previously touched – i.e., 4 or 5 are “hazardous” to the swipe be-

tween 1 and 8 – then the number of possible usable patterns is reduce by over 50% to

158,410. If further user factors are considered, such as pattern length or the number

of double backs or etc., then the space can even further be reduced. Clearly, human

factors can play a significant role and should be studied further in this domain.

3.7 Mitigating Smudge Attacks

Smudges on touch screen surfaces are insidious: They will be present as long as we

choose to interact with our devices directly with our fingers. This trend is likely to

continue. The growth of touchscreen devices, starting with smartphones and now

further popularized by tablets, suggest that consumers enjoy and want touchscreen

interfaces.

As such, we argue that the best mitigation strategy for smudge attacks is user

education. Clearly, the biological mechanisms that produce epidermal-oils cannot

be stemmed, so the onus must be placed on the user to be aware of latent smudges

and the potential harm they cause. Advancements in oleophobic properties of touch

screens can also aid in decreasing the risk, but awareness of the threat is paramount

to an effective mitigation strategy.

User awareness should also extend to designing future touch screen security mech-

anisms. For example, product designers should consider the implications of asking

for secure input on a touch screen: Is it a good idea to use the password Pattern as

an ATM identifier? This study clearly shows that this would be a bad idea.

However, providing secure input on touch screens is not a lost cause. Another

mitigation strategy is to alter the procedures of entering secure information such that

spurious smudges are purposely added to the screen post input. Whisper Systems

produces products for Android that support just such operations [115]. For example,

see Figure 3.17. Here, the pin entry is aligned vertically (left), and once the PIN is
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Figure 3.17: Modified PIN entry system from WhisperSystem that requires users to
obscure previous input to protect them from a smudge attack (Source [115]).

entered, the user must swipe downward (right) which obscures the forensic smudges.

As a final mitigation for smudge attacks, we argue that the Android password

pattern should be reconsidered in light of smudge attacks. For example, consider

PIN entry: Not only can smudges overlap (i.e., a repeat digit in the PIN), but the

ordering of the smudges is not evident. However, when considering the Android

password pattern, we highlighted a number of issues that heighten its susceptibility

to smudge attack. For one, password pattern smudges are fairly unique and are

easily differentiated from general application smudges. Password patterns must be

entered on the smartphone repeatably, whenever the phone is unlocked, and thus the

likelihood of a pattern smudge being present is relatively high. And finally, there seem

to exists significant human factors in selecting usable patterns that we hypothesize

reduces the set of likely patterns to a very tractable set.

For these reasons, we argue that the password pattern should not be considered a

strong security mechanisms because of smudge attacks. Users who choose to continue

using the password pattern are placing their phone at risk to trivial attack, and should

instead consider the password pattern as a soft security device to keep casual snoopers

at bay.
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3.8 Conclusion

In this chapter, we explored smudge attacks, an externally observable side channel

that is enabled by the novel touchscreen interfaces on modern smartphone. Our

investigation showed that smudge attacks are feasible by focusing on smudge attacks

as applied to the Android password patterns. Using photographs taken under a

variety of lighting and camera positions, we showed that in many situations full

or partial pattern recovery is possible, even with smudge “noise” from simulated

application usage or distortion caused by incidental clothing contact. We have also

outlined how an attacker could use the information gained from a smudge attack to

improve the likelihood of guessing a user’s patterns, even with partial information.

Given the results of this study, externally observable side-effects of providing

secure input on touchscreens needs to be more carefully considered when assessing

the security of smartphone devices. The Android password pattern, particularly,

should be seen in a less secure light because of its susceptibility to this attack. These

results also support the larger themes of this thesis that a broader security perspective

should be taken when assessing smartphones. In this chapter, we showed that the

smudge attack is a clear side channel that is not considered in previous security

studies, and yet, it has definite implications to the security of the Android password

pattern and other secure input.
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Chapter 4

Accelerometer and Sensor-Based

Side Channels

In the previous chapter, we discussed the implications of the touchscreen physical

interaction on smartphone with respect to external observations. In this chapter, we

investigate the effects of internal observation on the security of providing input on

smartphones. We demonstrate the threat of such internal observations by investigat-

ing the practicality of a sensor-based side channel using the accelerometer sensor.

The results in this chapter support the larger argument of this thesis with respect

to the necessity of broader security analysis for smartphones that incorporates the

input mechanisms. As was shown in the previous chapter, the interaction layer of

smartphones (namely, the touchscreen) enables the smudge attacks because smart-

phones must be touched for interaction. Similarly, the smarpthones’ touchscreen and

small form-factor encourage users to hold their phone while providing touch input.

As a consequence, the phone is shifted in space, which is measured by the sensors.
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4.1 Introduction

Modern smartphones ship with an increasing range of sensors to measure the phone’s

environment. These sensors are used for a wide variety of tasks; for example, the

gyroscopic and accelerometer sensor can measure the movement of the phone in space

and are often used in gaming applications. Applications are generally granted access

to these sensors without much concern and without notifying the user; however,

certain sensors may be able to measure much more than just the user’s intention

within a single application.

We describe such information leakage due to sensor readings as a sensor-based

smartphone side channel, and this side channel is a direct result of the touchscreen

interaction layer promoted by smartphones. As compared to traditional computer

platforms, smartphones are tactile, hand-held devices, and users provide input by

physically touching and gesturing on the touchscreen. These actions implicitly shift

and adjust the device in measurable (and machine predictable) ways. In recent re-

search, it has been shown that the gyroscopic sensor, which measures the smartphones

orientation (e.g., pitch or roll), is capable of inferring where on a touchscreen a user

taps/touches [25, 117]. Such inferences constitute a side channel, potentially convey-

ing secure input intended for a foreground application to a background one which has

access to the sensor.

In this thesis, we continue this line of investigation, and show that the internal

observation of subtle movements can lead to side channels. Particularly, this thesis

focuses on the accelerometer sensor’s capability in this domain. We hypothesize that

the accelerometer sensor can reveal a wide range of user input surreptitiously and

does so at a similar fidelity as previously studied movement sensors. In applicable

comparisons to previous gyroscopic side channel techniques (particularly [117]), we

found that accelerometer based techniques perform nearly as well, or better. However,

we also identify significant challenges not described in previous work. Sensor based

side channels are challenged when handling movement noise (e.g., input provided

49



while the user is motion) and developing unsupervised learning routines (i.e., without

needing significant training data).

To demonstrate a sensor-based side channel, we focus on inferring two secure

input types using the accelerometer sensor: four-digit PINs (tap/touching) and the

Android password pattern (gesturing/swiping). We collect accelerometer readings

from 24 users, 12 entering in PINs and 12 entering patterns. Using standard machine

learning techniques, we show that accelerometer measurements reliably identify the

PIN or pattern that was entered. In our experiment, when selecting from a uniform

test set of 50 possible PINs or patterns, our models can predict the PIN entered 43%

and pattern entered 73% of the time within 5 guesses. Further, when we introduce

movement noise caused by users walking while providing input, our models can still

predict PINs 20% of the time and patterns 40% of the time within 5 guesses. We

also employ a Hidden Markov Model (HMM) to predict variable-length sequences of

digits pressed in a PIN or swipes in a password pattern. On this considerably harder

sequence prediction problem (where the random chance of being correct is roughly

0.01%), we can predict PINs 40% of the time and patterns 26% of the time within

20 guesses.

To summarize, this thesis makes the following contributions in this domain:

• Large and Diverse Smartphone Sensor Reading Data-Set: We perform

the largest user study of sensor-based side channels to date, 24 users and over

9,600 samples, and the first study to consider both controlled (while users sit)

and uncontrolled settings (while users walk).

• Accelerometer is Sensitive to User Input: We demonstrate that the ac-

celerometer sensor is also a highly capable side channel against secure input,

such as PINs and password patterns, and general input based on touch/tapping

or gesture/swiping. In comparisons to previous results, where applicable, ac-

celerometer data performs nearly as well, or better, than gyroscopic data.

• Measure the Effects of Movement Noise: We are the first to investigate
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the effects of movement noise, such as walking, on sensor-based side channel

inference techniques: Some techniques experienced only marginal decreases in

performance, while others, were rendered completely ineffective.

• Measure the Practicality of a Dictionary Attack: We observe that there

is reasonable consistency across users and devices; however, movement noise

and user variance may be too great to construct an accelerometer-reading to

input dictionary mapping.

• Novel Feature for Acceleromter Readings: We develop novel features for

accelerometer readings that are sample rate independent and based on signal

processing and polynomial fitting techniques; the first time such techniques are

applied in the domain of sensor-based side channels.

As a result of these findings, and based on previous sensor-based side channel

results [25, 86, 117], it is clear that the security model for smartphones with respect

to on-board sensors and the touchscreen interface should be reconsidered. In this

thesis, we advocate context-based sensor access revocation policy for smartphones,

similar to proposals in [85, 29, 18], such that applications with access to sensors are

either blocked (or fail) when attempting to read from such sensors while sensitive

input is being provided.

In the rest of this chapter, we first provide an introduction to this technique, as

well as a brief discussion of related work using the gyroscope as a sensor-based side

channel. The rest of the chapter outlines the threat model, data collection, and our

analysis, as well as mitigation strategies.

4.2 Previous Sensor-Based Side Channels

In Chapter 5, we discuss the related work of sensor-based side channels in detail.

Here, we briefly outline previous approaches in sensor-based side channel research.

We refer the reader to the latter chapter for a comprehensive review of the related
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work.

Generally, three previous work have investigated the ability to learn touch input

on smartphones from on-board movement sensors [25, 86, 117], but only one, [86],

relies solely on accelerometer readings to infer user input, demonstrating that the

accelerometer has great potential in this domain. Both [25, 117] either use gyroscopic

data only ([25]), or rely primarily on gyroscopic data to infer user input ([117]). Our

work builds and expands upon previous research, showing that the accelerometer,

alone, is a highly capable mechanism for a side channel and much more sensitive to

broader input types than previously thought in [86].

One area, in particular, where this thesis significantly expands on previous work

is in the scope of the data set used in the experimentation. We collected a diverse

data set from 24 users, 12 entering patterns and 12 entering PINS, both providing 5

examples of each PIN or pattern. Further, we also directed volunteers to provide an

additionally example of each PIN or pattern while they were walking. This provides

a much needed perspective on the limitations of this attack.

None of the previous work included data collection on this scale. The publications

outlined above use small sample sets, generally collected from 3 to 4 users ([117] does

use 10+ users in some of their experiments), and none consider the effects of movement

noise, such as what occurs when a user is walking and using their smartphone. Using

the collected data, we are able to speak to the capabilities of an attacker with respect

to cross-training across many users and in diverse settings. However, it should be

noted that the data collection presented in this thesis does not occur over an extended

period of time, just within the confines of the lab, roughly 40 minutes. Data collected

over weeks, or months, would improve the scope of these results.

With respect to comparing to previous techniques, unfortunately, many of the

techniques and experimental setups described in previous work cannot be replicated

in our lab, thus rendering “apples-to-apples” comparisons unfeasible. For example,

we are unable to duplicate the applications presented in [25, 86, 117] so that we

can apply the features extraction and model generation presented in this chapter.
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Figure 4.1: Accelerometer Axis of Measurement (Source [36])

However, in one case, we are able to perform an approximate comparison between

the accelerometer and the gyroscope by inspecting the results in TapLogger [117] when

inferring PIN input on a telephone dialpad. This dialpad input dialog resembles the

PIN input dialog used in our experiments, and although it is does not match precisely,

the comparison does provide insight. Those experimental results are presented in

Figure 4.12.

4.3 Background

Before proceeding, we first provide background on the secure input types used in

our experiments. Additionally, we provide background on the accelerometer sensor

and the measurements it takes. In the following sections, we show how to use the

accelerometer measurements to learn the PIN or pattern entered. The material in

this section is covered in more detail in Chapter 2.

PINs Both Apple iOS and Android based smartphones support PINs as a screen

lock mechanism. PINs are the primary iOS screen lock interface, but Android pro-

vides two other options: a graphical password pattern (see below) or a pass-phrase

consisting of both numbers and letters. A PIN consists of a sequence of four digits,

0-9, and digits may repeat. Thus, there are a total of 10,000 possible PINs, and

iOS will lock down the phone after 10 failed attempts, while Android allows for 20
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failed attempts. In addition to securing the device, PINs are also used in banking

applications, particularly Google Wallet [54] requires a user to enter a PIN to confirm

transactions.

Password Pattern The Android password pattern is a graphical password scheme

that requires users to enter a sequence of swipes that connect contact points in a

three-by-three grid. The user must maintain contact with the screen while entering

a pattern, and a user’s pattern must minimally contact four points. Android allows

for 20 failed pattern entry attempts before locking the device permanently. Despite

its seeming complexity, only 389,112 possible patterns exist [13], and likely, many of

those patterns are completely unusable for general daily use: in our experience (see

Section 4.5), using a randomly chosen pattern as a security credential will be too

difficult to enter reliably. The number of actual human-usable patterns remains an

interesting question; we hypothesize that it is at least an order of magnitude less than

the total of available patterns.

Accelerometer Sensor The accelerometer sensor1 measures linear movements in

three dimensions, side-to-side, forward-and-back, and up-and-down (labeled x, y,

and z respectively in Figure 4.1). Upon each reading, a data element is provided

that contains the acceleration reading in all three directions, and the units are in

m/s2. Note that the accelerometer sensor measures different movement than the

gyroscopic sensor, which senses the orientation of the phone, i.e., the pitch and roll

angles. Although certain movements can be measured in both, e.g., tilting the phone

forward and back, others are only measured by one sensor or the other, e.g., holding

the phone face up and moving it left would only be measured by the accelerometer

sensor.

Accelerometers have been previously studied in the computer science community,

and researchers have shown that accelerometer readings can provide a rich source of

1We use the linear-accelerometer sensor, as described in the Android SDK, which does not
normalize for gravity and orientation. See Chapter 2 for more detail
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information about the actions of individuals [17, 66, 75, 94, 95]. Using accelerome-

ters as a user interface (UI) enhancement has also been proposed [66, 72, 89]. The

accelerometer sensor is used in many applications, for example in the Bump appli-

cation [107], an application to quickly exchange contact information by “bumping”

smartphones together. More light weight applications also make use of the accelerom-

eter, for example applications that simulate a “light saber” use the accelerometer to

determine when to play a sound effect [55].

4.4 Attack Scenario

We consider an attacker who wishes to learn the secure input of smartphone users via

an accelerometer side channel. An attacker may gain access to accelerometer data

in a wide variety of ways – e.g., the attacker finds a phone where an application has

written accelerometer data to the sd-card. We consider a more active attacker who

distributes a malicious smartphone application that can run in the background, has

access to the accelerometer, and can communicate over the network. As an example

of the kinds of input an attacker may be able to learn, we focus on the information

that is leaked by two common input types, entering a PIN or Android password

pattern that is used to lock the smartphone.

To this end, the malicious application is aware when the phone initially wakes

and, thus, the smartphone will prompt a user for a PIN or password pattern while the

malicious application is running in the background. The application then activates

the accelerometer sensor, recording measurements for a short time period. We found

that it takes 2.4 seconds to enter a pattern and 1.3 seconds to enter a PIN, on average,

so the accelerometer does not need to be active for very long. The accelerometer

measurements are eventually sent over the network to be analyzed offline.

The attacker’s goal at this point is to develop a method for comparing the captured

accelerometer data to a corpus of labeled accelerometer data2. That is, the attacker

2The attacker could build such a corpus by distributing an application that requires users to
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has at his/her disposal accelerometer data that he/she knows was collected when a

particular PIN or pattern is entered. The problem of identifying the PIN or pattern

that was entered reduces to a classic machine learning problem: Given previously

label input, what is the label of the unknown input? In this scenario, the label is the

PIN or pattern of the victim.

We consider two scenarios in our experiments for the attackers capabilities to make

this comparison to the corpus at his/her disposal. In the first scenario, we assume

that the attacker has a large corpus, and samples of the PIN or pattern he/she is

trying to learn can be found in the corpus. In the second scenario, we assume that

the attacker does not have samples in the corpus, or not enough to generate a strong

model. Instead the attacker has a limited set of labeled samples of individual swipes

or touch events, such as a swipe from left to right on the screen or the touch of a

particular digit.

In our experiments, we model these two scenarios by first considering a sample

set of 50 patterns and 50 PINs. Here the goal of the experiment is to measure how

accurately a pattern and PIN can be identified based on previously seen input. In

the second scenario, where the attacker does not have sufficient labeled data, the goal

of the experiment is to measure the accuracy of a sequence predictor that tries to

identify a pattern by making a sequence of smaller predictions (e.g., a single swipe

or digit press). We present more details of our machine learning setup in Section 4.6.

Of course, an important question is: What can an attacker do with the information

learned? Clearly, if the attacker has learned a user’s password pattern, it is only useful

if the attacker gains physical access to the victim’s phone at some later point because

the Android password pattern is not a widely used security mechanism. Granted,

this is a reasonable attack scenario. However, learning a user’s smartphone unlock

PIN may be applicable in other settings if the user reuses his/her PIN, such as an

ATM pin or in an online banking application [22].

More broadly, we focus on PINs and Android password patterns because they

enter patterns for other purposes, such as [37, 56, 88].
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represent a larger set of user input on touchscreens that is composed of point touching

and gesturing. Demonstrating an accelerometer side channel against these input

types is an example of a broader family of sensitive touchscreen inputs that may be

susceptible to this side channel.

4.5 Data Collection

We built two applications to model the attackers perspective and determine if a back-

ground application with access to the accelerometer can infer input to the foreground

one. The first application prompts users to enter a PIN, and records accelerometer

data in the background; similarly, the other application prompts the user to enter

a pattern while recording accelerometer data in the background. A visual of the

applications can be found in Figure 4.2.

We recruited 24 volunteer users to participate in the core study: 12 users entered

password patterns, and 12 users entered PINs. The users in our experiment were

surprisingly diverse. Two users were left handed, and less than 50% of the users

owned a smartphone. All users, however, have used a smartphone at some point.

Only two users locked their phone, and they did so using a PIN and not a password

pattern.

We used a total of four phones in our experiment, two were provided by us: Nexus

1 and G2. If the user owned an Android phone, we installed the application directly

on his/her phone for the experiment. This occurred twice, and experiments were also

conducted on an Nexus S and Droid Incredible. All the phones in our experiments

indicate through the standard API that the accelerometer can sample at 76 hz. In

practice, we observed this to almost never be the case, and even phones with the

same chipset sampled at different rates. This is likely due to slight differences in the

Android OS installed. Details about the phones used in the experiments can be found

in Table 4.1.

57



Model Name Chipset Pattern/PIN Sample Rate

Nexus 1 Snapdragon S1 5/5 ∼ 25 hz

G2 Snapdragon S2 6/6 ∼ 62 hz

Nexus S Hummingbird 1/0 ∼ 50 hz

Droid Incredible Snapdragon S1 0/1 ∼ 50 hz

Table 4.1: Android smartphones used in experiments, their chipsets, number times
used in either pattern or PIN experiments, and their observed accelerometer sample
rate.

Experiment Overview The experiment for both PINs and patterns consisted of

two rounds. In the first, the users were asked to sit at a table and enter in 50

PINs/patterns in random order using their dominant hand a total of 5 times. Fol-

lowing, we asked users to walk in a circle (around our lab) while entering in the same

set of 50 PINs/patterns using their dominate hand. We provided very little oversight

during the experiment: After providing instructions, we periodically checked in on

their status, but did not provide further instruction.

For each user, we have 5 samples of each PIN/pattern in a controlled setting (i.e.,

sitting) and 1 sample in an uncontrolled setting (i.e., walking). We considered the

sitting data set as training data, and the walking data set as the testing data, only

testing against it once all the models were tuned using the sitting data. All the

results presented, unless otherwise noted, are an average across multiple runs of a

5-fold cross validation using the training set, i.e., data collected while the user was

sitting.

It is important to note that the patterns and PINs used in the experiment are

not the users’ real patterns or PINs, and that real-world users will likely be very well

practiced at entering in their own PINs or patterns. This familiarity could affect the

way (i.e., the way the phone moves in space) a user enters a pattern or PIN. We do

not model this in our experiments (indeed, performing such an experiment on users’

actual secure input could be seen as unethical). However, our test users, by the end

of data collection, have entered each PIN and pattern a number of times, and many

even commented about their familiarity with the patterns/PINs in the test set upon
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Figure 4.2: PIN and Pattern Entry Applications

completion.

PIN Data PINs were selected at random. A total of 50 PINs were used in the

experiment, and all twelve users entered the same set of PINs a total of 5 times.

We only considered accelerometer data when the user entered the PIN correctly, and

users are re-prompted until the PIN was entered correctly. In addition to recording

accelerometer readings, we also log the timing of the touch events to ensure that the

accelerometer data matches the timing of PIN entry. We considered all accelerometer

readings that occurred within 50 ms of entering the first digit and 50 ms after entering

the last digit. A visual of the application used in the experiments can be found in

Figure 4.2.

Pattern Data Pattern data is collected in a similar way to PIN data – twelve

users enter a set of 50 patterns a total of 5 times and touch information is logged

when a user gestures across a contact point. We initially selected a set of 50 patterns

at random. However, we quickly discovered that the vast majority of the patterns

selected were surprisingly hard to enter. The patterns were convoluted and overly

complicated, and in a initial test of the application, our test users reported that it

took many iterations (5+) to enter the pattern correctly. As a result, we wished
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to use a set of reasonable and representative password patterns that our test users

could reliably enter on their first attempt. We developed two simple criteria to select

patterns at random that meet this requirement.

The first criteria limits the number of cross-overs, that is, it limits the number of

swipe segments that cross (or double back) over previous swipe segments (e.g., the

pattern in Figure 4.2 contains a single cross-over). The motivation for this criteria is

that users would likely move in consistent directions. We anticipate that users would

generally select the next contact point in region near the current contact point. The

second criteria restricts contact points that are untouched, requiring that untouched

contact points be generally near other untouched contact points. Similar to the

cross-over criteria, this restriction again assumes that users will likely connect points

in nearby regions.

We do not argue that real world users apply these criteria while selecting their

patterns, but in our experience, these criteria do produce patterns that our test users

found reasonable to enter. Studying user selection criteria for password patterns is

beyond the scope of this thesis, and we are unaware of any such study.

4.6 Analysis and ML Techniques

In this section, we present our analysis of the collected accelerometer data as well

as present our machine learning techniques for classifying data. The accelerometer

measurements for both PINs and patterns consist of a sequence of readings in each

linear direction. In addition to the accelerometer measurements, we also record the

timing of touch events. A touch event for a PIN is when the user presses a digit, and

a touch event for a pattern is when a user swipes across a contact point. The touch

events are used to properly align the accelerometer data.

A malicious application distributed by an attacker will not have direct access to

touch events from other applications—if it did, then there would be no need to employ

side channels. A malicious application must also determine when secure input begins
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and how to segment the accelerometer readings. Automatically detecting touch events

from raw accelerometer data is beyond the scope of this study; however, other machine

learning techniques (or information from other side channels) could be employed to

solve this problem. Additionally, techniques suggested in [117] could be applied here,

but in our investigation, we found that it may be ineffective with low sample rates

and gentler tap events, as what seems to occur for single hand input. Further, the

techniques in [117] would be ineffective for gesture input, as required to determine

touch events for patterns.

Feature Extraction

Here, we describe the feature set used as input to the machine learning classifiers.

For notation, consider a stream of accelerometer readings A = {a1, . . . , an} of size n.

Each data value ai ∈ A contains four sub-values (or elements): axi , the acceleration

in the x direction; ayi , the acceleration in the y direction; azi , the acceleration in the

z direction; and, ati, the time stamp of this reading. Additionally, allow Ad to refer

to the projection of the dth element of the readings in A, that is, Ad = {ad1, . . . , adn}.

As is, the accelerometer data is varied, affected by subtle tilts and shifts. For

example, often the z dimension is close to 9.8 m/s2, i.e., the force of gravity. The

first step in feature extraction is to normalize the readings in each dimension such that

they fluctuate about 0. We use three normalized forms of A for feature extraction:

1. Mean Normalization: For each linear direction d, compute the mean md =

mean(Ad), and return: Am = {adi −md}.

2. Linear Normalization: Perform a linear fit and compute the fit curves Ld =

{ld1, . . . , ldn} for each accelerometer direction d, and return: Al = {adi − ldi }.

3. Quadratic Normalization: Perform a quadratic fit and compute the fit curves

Qd = {qd1 , . . . , qdn} for each accelerometer direction d, and return: Aq = {adi−qdi }.
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Feature Length Description

STATS 6 Root mean square, mean,
standard deviation, vari-
ance, max and min

3D-Poly-Deg 4 Parameters of a degree-3
polynomial fit

3D-Poly-STATS 6 STATS for a degree-3 poly-
nomial fit reconstruction

iFFT-Poly 35 The inverse Discrete Fourier
Transform (DFT) of a DFT
of the 3-D polynomial fit
curve using 35 samples.

iFFT-Acc 35 The inverse DFT of the DFT
of the accelerometer readings
using 35 samples.

Table 4.2: Features Set: Each feature is extracted in each linear direction in the
accelerometer reading.

Following the normalization, we have three representation of A: Am, Al, and Aq. Now,

for each normalized accelerometer data stream, we extract the features in Table 4.2.

The first set of features extracted is standard statistics of the accelerometer stream

(STATS), such as the root mean square, mean, standard deviation, variance, max and

min. Each of these stats are computed for each normalization in each dimension, e.g.

for Am, we compute STATS(Ax
m), STATS(Ay

m), STATS(Az
m) and the resulting 18

features are appended to the feature vector. Similar statistical features are also used

in previous sensor-based side channel research, particularly in [86].

The next two features are computed by first fitting a 3-degree polynomial to the

accelerometer readings in each dimension. The parameters of the fitted polynomial

in each dimension are the next features added (3D-Poly-Deg); that is, d3, d2, d1, d0

from f(t) = d3t
3 + d2t

2 + d1t + d0 where t refers to the timestamp of the readings.

Following, we compute the curve values at each time stamp in At and add the STATS

of that curve as a set of features (3D-Poly-STATS).

The next two features, iFFT-Poly and iFFT-Acc, are sample-normalized forms of

the polynomial curve and accelerometer stream. The goal is to use the consistency

in the shape of the curves of both the polynomial fit and the accelerometer readings
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Figure 4.3: An example of polynomial fit features for PIN 2087 (left) and PIN 2358
(right). The top plot shows iFFT-ACC of the accelerometer data (just acceleration
in the x dimension), and the bottom plot shows the 3-d polynomial fit (iFFT-Poly).

as features, but there is a large variance in the number of samples n across readings,

even when a user enters the same PIN or pattern multiple times. We wish to instead

use the curves as features in a sample-normalized way such that regardless of n, we

can represent the stream in m values.

To solve this problem we use 1-dimensional Discrete Fourier Transforms (DFTs)

with a resolution of m = 35 samples. More precisely, we compute

real(F−1
m (Fm(Ad))).

This computation first encodes the signal using m complex frequency basis functions,

then reconstructs the original signal from its compressed form. This preserves the

general shape and values of the curve, but it normalizes the time domain to m sam-

ples and discards noisy high frequency components of the signal. We experimented

with varied values of m and found that a small value of m did not preserve enough

information, while a large value m preserves too much variance because if m > n,

the input is zero padded. We found that m = 35 to be a good compromise between

these extremes, and it performed effectively for both PINs and patterns.

To further demonstrate this technique, in Figure 4.3 we visualize the iFFT-Acc

and iFFT-Poly for accelerometer reading collected while a user entered in two different

PINs (note, this is accelerometer readings in just the x dimension). Even though the
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same PIN was entered by the same user on the same smartphone, n varied between

59 and 112; however, you can see that regardless of the variance in n, there is a shared

shape to the curves. This is what we wish to capture in our feature set.

In total, for each accelerometer reading, we use 774 features. That is, for each

dimension (x, y, and z) and for each normalization, we extract 86 features, totaling

774 = 3× 3× 86. In experiments, we found that all the features improve prediction

results, and that these features were effective for both PINs and patterns, as well as

single tap/touch and swipe/gesture events.

Machine Learning Classification

Two classification procedures are used in experimentation to match the attack sce-

nario described in Section 4.4. Recall that we wish to model two scenarios: (1) The

attacker has a large corpus of labeled accelerometer data at his/her disposal and at-

tempts to match unknown input to some label in the corpus; and (2), the unknown

input is not in the corpus (or not well represented).

Logistic regression To model the first scenario, where the attacker is matching

unknown input to labels in a corpus, we train a multi-class logistic regression model

on the feature vector labeled with the PIN or password pattern (we use the LIB-

LINEAR implementation [44]). For each possible label, the logistic regression finds

a discriminating line in feature space to best separate examples of the label from ex-

amples of all other labels. Thus, the regression learns a weighted sum of the features

described in Section 4.6 for each label.

Given accelerometer data from entering a PIN or pattern not used in training,

the resulting logistic regression model will output a predicted label (i.e., a PIN or

pattern), or a set of labels ordered by the likelihood of being the true label. If the

label matches the input, we consider this a successful prediction. We consider multiple

guesses from the model as the ranking of the output label that matches the input
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label.

There are some limitations to this experiment because we only learn models for

the known PINs and patterns in the training set; that is, the 50 pattern or 50 PINs

used in the experiment as opposed to all 389,112 possible patterns and 10,000 possible

PINs. However, picking from random chance of the possible 50 patterns would result

in a 2% prediction accuracy. The model greatly exceeds random guessing by a factor

of 20 or more for patterns and 9 or more for PINs.

Hidden Markov Models To model the second scenario, where the attacker’s cor-

pus may not have sufficient samples of the unknown input, we build a classifier that

can predict unseen-before sequences of patterns and PINs. To achieve this, we obtain

the probability of each label from the output of the logistic regression classifiers, and

use these as observation probabilities in a Hidden Markov Model (HMM). The HMM

finds the most likely sequence of input patterns or PINs (maximum a posteriori) by

jointly considering the probabilities of individual swipe or digit entry classifications

along with the likely transitions between swipes or digit entries. For example, for

a four-digit PIN, the HMM jointly infers the most likely set of four digits given the

individual beliefs in what digit was pressed at what time, and what digits are likely

to follow other digits—certain combinations of digit transitions are impossible, and

some are more likely than others. The same inference process can be used for patterns

based on which swipes (connecting two contact points) are likely to follow previous

swipes.

Formally, let `i be a possible label for position i in a sequence, and oi its corre-

sponding observed feature vector. Then, we obtain p(`i|oi) from the logistic regression

model for all `i—the probability that the label is `i given the data oi. The transitions

p(`i+1, `i) are estimated via maximum likelihood from our training data; simply em-

pirical estimates of each transition. For a sequence of length k, the HMM determines

the most probable joint assignment
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(`?1, . . . , `
?
k) = arg max

(`1,...,`k)

k∏
i=1

p(`i|oi)
k−1∏
i=1

p(`i, `i+1).

Note that the joint space of possible labels (`1, . . . , `k) is combinatorial (exponential in

k). Fortunately, efficient dynamic programming techniques exist to solve this exactly

in O(k2) time.

In our experiments, we explore label spaces of different granularities. In an HMM

over unigrams, each position in the sequence corresponds to a single swipe or digit.

In an HMM over bigrams labels consist of a pair of swipes or consecutive digits. We

quickly found that the unigrams performed poorly, and in the results below, we only

use bigram HMMs. This is a proof of concept, and a larger model could incorporate

even larger scope (larger grams), including refined transition matrices that account

for human pattern/PIN selection factors.

4.7 Evaluation Results

In this section, we present the results of our experiments for inferring PINs and pat-

terns using accelerometer reading. We begin by modeling the first attacker scenario,

where the attacker has access to a large corpus of labeled data. We additionally

address trends in expanding the corpus from 50 PINs/patterns, and how such predic-

tion models would fare. Following, we investigate a general prediction model based

on HMM: This models the second attacker scenario. All the results presented in

this section, unless otherwise noted, are the average across five randomized runs of a

five-fold cross validation.

PIN/Pattern Inference

To begin, we are interested in how distinguishable PIN/pattern inputs are based on

accelerometer readings using the features described in Section 4.6. The data used in

this experiment consists of the 50 PINs and 50 patterns collected from the 24 users

while they were sitting. The experiment proceeds by performing a five-fold cross
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Figure 4.4: Prediction accuracy over multiple guesses for predicting patterns (left)
and PINs (right). The shaded trend lines are individual users.

.

validation. Each of the five runs from a given user is randomly divided into five folds,

and a model is constructed from the features extracted from four of the folds, and

tested on the fifth. This process is repeated until all folds have been in the testing

and training positions.

The results from this experiment are presented in Figure 4.4. The y-axis is pre-

diction accuracy, and the x-axis is the number of predictions (or guesses) attempted;

that is, the logistic regression output allows for a probabilistic ranking of the pre-

dicted labels based on how likely it is the true label. For example, two guesses refers

to using the two top ranked predicted labels. If the true label is one of those two

labels, we consider it accurately predicted with two guesses. The dark trend line

refers to the average across all 12 users for PINs and 12 users for patterns. The error

bars on this curve mark the 1st and 3rd quartiles. The grayscale lines are individual

users, and the dotted line represents the prediction probability for random guessing3.

We use this style in all graphs presented in this section unless otherwise noted.

Inspecting Figure 4.4, it is clear that accelerometer readings do leak sufficient

information to differentiate between input of the same type. In all cases, across all

3Note that the trend line for random guessing with multiple attempts is not linear because of
conditional probabilities.
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users, our model can infer the precise PIN or pattern from the set of 50 at a rate

substantially higher than random guessing. Upon the first prediction, for patterns,

the model on average predicts with 40% accuracy, 20 times greater than random

guessing of 2%; however, PIN inference only averages 18% across all users, just 9

times greater than random guessing. But, upon successive predictions, the model

performs better: On the fifth prediction, the model can predict the pattern with 73%

accuracy and PINs with 43% accuracy, a difference of ∼50% and ∼30% over random

guessing, respectively. Considering prediction accuracy rates after multiple guesses is

important because an attacker would likely have multiple attempts at guessing secure

input, such as the 20 attempts provided by Android for unlocking the phone and the

10 attempts provided by iOS.

Example Trends In the experiment above, each cross-validation uses just four

examples for training while testing on the fifth. An interesting question is: How would

these models perform if more examples were available? That is, we are interested in

the example learning curve. To investigate this, we recruited three additional users

to enter in the same set of 50 patterns and 50 pins a total of 12 times each while

sitting using the same instructions as before. We then included their results with the

original 24 users to see if we should expect an increase in prediction accuracy with

more training data.

To measure the effect of additional examples, we incrementally increase the num-

ber of examples (and folds) performed. Beginning with two examples for each

PIN/pattern, we perform a two-fold cross validation. Following, we use three ex-

amples and preform a three-fold cross validation, and so on, until there are no more

examples to include. The results of this experiment are presented in Figure 4.5: The

x-axis is the number of examples used, and the y-axis is the prediction accuracy. For

both patterns and PINs, there is a clear increase in inference accuracy as the number

of examples increase. At the extreme, with 12 examples, patterns are inferred with

an accuracy near 60% on the first prediction, and PINs are near 40%. Both PINs and
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Figure 4.5: Trendline for how the number of examples affect prediciton for patterns
(left) and PINs (right)). Note that we include an additional three users who provided
12 examples, and the original 24 users only provided 5 examples of each PIN/pattern.

patterns see diminishing returns on accuracy after 8-10 examples; the logarithmic

growth of the learning curves is consistent with computational learning theory [58].

Overall, patterns, again, are more easily predicted via accelerometer data given the

features we developed, plateauing at an prediction rate 50% greater than that of

PINs.

Label Trends Another important question is: How would these models perform as

the number of available labels increases? That is, we are interested in the performance

of a similar model that must predict from a set of 10,000 labels, rather than just 50,

as would be the case if an attacker were targeting users generally. This scenario can

be estimated by performing a sequence of five-fold cross validations, where in each

step an additional label is included in training and testing. For example, in the first

step, the model must select between two labels, and in the last step, it must select

from 50, as before.

The results of this experiment are presented in Figure 4.6: The x-axis is the

number of included labels, the y-axis is the prediction accuracy, and the dotted

line is the probability of random guessing. As the number of labels in the model

increases, the average trend matches very closely (R2 > .99) to an inverse exponential
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Figure 4.6: Trendline for the number of samples being selected from: patterns (left)
and PINs (right)). Note that the accuracy rates closely match an inverse exponential.

(in dashed-red), and using this trend line, we can extrapolate the performance of

such a model (with 5 examples per label) predicting across any number of labels.

For example, selecting from 10,000 PINs, we should expect an inference accuracy

of about 2% on the first prediction, which is 277x greater or 8 magnitudes greater

than random guessing. For patterns, if the model is selecting from 10,000 patterns, it

should predict with an accuracy of 13% on the first prediction, and, if it was selected

from all 389,112 possible pattern, it should predict with an accuracy of 6% on the first

prediction, 2,3567x greater or 14.5 magnitudes greater than random guessing. These

are likely optimistic projections for our feature set, but these results do suggest that

predicting input from a large label space using accelerometer readings is tractable, if

an attacker were able to collect sufficient examples.

User and Device Effects As noted in Table 4.1 and in Section 4.5, the data set

contains rather large variance across devices and users. An important question is:

How does training on accelerometer readings from one device or user and testing on

another device or user affect an attacker’s inference capabilities? Such results speak

to the attacker’s ability to construct a large and diverse corpus to use in training on

users/devices previously unseen.
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Figure 4.7: Prediction accuracy over multiple guesses for predicting patterns (left)
and PINs (right) for different devices.

To begin, we investigate prediction performance for training and testing on the

same device for the same user. These results are presented in Figure 4.7. As we

might expect, devices with higher accelerometer sample rates (refer to Table 4.1)

tend to perform better; however, the decrease in performance for lower sample rates

is not as extreme as was seen in [86]. For patterns, there is a small drop in inference

performance between the Nexus S and the Nexus One, although the Nexus S effective

sample rate is double that of the Nexus One. PINs seem more affected by sample

rate issues, there is at least a 50% drop in performance between the highest sample

rate device and the lowest sample rate one. Yet, all devices perform well above

random guessing, suggesting that the features are reasonably resilient to sample rate

fluctuations, as addressed by the sample-normalized features (see Section 4.6).

However, in order to show that the attacker can construct a comprehensive dictio-

nary, we must show that training and testing on different devices and different users

is also effective. In Figure 4.8 and 4.9, we present the results of experiments to test

such a capability. First, in Figure 4.8 we present two trend lines: one where training

and testing occurred on the same device and one where training and testing occur

on different devices. As expected, training and testing on different devices performed

worse than using the same device. This decline was fairly significant for patterns;
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Figure 4.8: Prediction accuracy over multiple guesses for predicting patterns (left)
and PINs (right) when training and testing on different devices.
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Figure 4.9: Prediction accuracy over multiple guesses for predicting patterns (left)
and PINs (right) for training on 11 users and testing on one.

however, the decline was relatively small for PINs by comparison.

In Figure 4.9, we present the results of experiments where we constructed a model

trained on all but one user in the data set, and tested on the remaining. This

experiment most closely resembles the scenario of an attacker with a large corpus

trained on varied users and devices. Interestingly, although patterns are inferred at

a reasonable rate on average, there is great variance. Inspecting the gray-scale lines

for individual users, some users perform fractions better than random guessing, while

others perform as well or better than testing and training on the same user (the
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Figure 4.10: Prediction accuracy over multiple guesses for predicting patterns (left)
and PINs (right) while the user is walking. The shaded trend lines are individual
users.

.

dash-dotted trend line). PINs, surprisingly, perform much more consistently when

training and testing across multiple users and devices, and even perform as well (and

sometimes better) than testing and training on a single user/device. This suggest

that dictionaries of accelerometer data can be collected, but there seems to be wide

variance for some input types that may affect accuracy.

Movement Noise Finally, all the results presented previously considered data col-

lected in a controlled movement setting, i.e., while the user was seated at a table.

It is important to know how these models perform if they were predicted from noisy

data, e.g., collected while the user was walking. Although it is likely that an attacker

would obtain stable accelerometer data, he/she would also obtain data while the user

is in motion. The effects of noisy samples must also be considered if the attacker were

to construct a representative corpus.

In Figure 4.10, we present the results of an experiment that investigates the affect

of movement noise. First, we built a model using the data for a single user while

they were sitting, and then we tested that model on data collected while the user was

walking. Also presented in Figure 4.10 is the trend line for the performance of the
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cross-validation while the user is just sitting. Clearly, there is a significant decrease

in the inference performance as a result of movement noise. However, what is unclear

from this experiment is how a model would perform if it had a large collection of

movement noised examples to train on. Unfortunately, we do not have sufficient

samples to investigate, but it is likely that performance would improve but would not

surpass controlled and movement-stable collection scenarios.

Pin/Pattern Sequence Inference

The results above model the first attack scenario, where the attacker has a large

corpus of labeled data available, and the attacker can apply logistic regression to

differentiate input. In this subsection, we consider the second attack scenario, where

such a corpus is unavailable, and instead the attacker must infer the larger input by

performing a sequence of smaller inferences. For example, we consider an attacker

who has a set of labeled data that refers not to the exact PIN/pattern but to examples

of single touches of digits or individual swipes. The goal is to link those predictions

together using a hidden Markov model (HMM) to infer the whole input.

Single Touch/Gesture Inference The first step in this process requires showing

that the features described previously also differentiate single touch or swipe input.

To study this, we segmented the accelerometer data for PINs and patterns based on

the recorded touch logs such that features can be extracted based on a single event.

As noted previously, the process an attacker may use to segment the data in this

manner using just accelerometer data is beyond the scope of this work; however, such

segmentation is likely possible, such as described in [117].

We performed experiments for inferring both unigrams and bigrams. A unigram

consists of a swipe across a contact point in a pattern, or touching a single digit for a

PIN. A bigram consists of a swipe connecting two contact points in a pattern, or two

sequential digit press in a PIN. Thus, there are 9 and 10 possible unigram values for
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Figure 4.11: Prediction accuracy for uni- and bigrams for patterns (left) and PINs
(right) with 5 guesses. Note that there are 9 and 10 possible unigrams and 72 and
100 possible bigrams for patterns and PINs, respectively.

patterns and PINs, respectively, and 72 and 100 possible bigram values for patterns

and PINs, respectively. To test the inference capabilities of an attacker, we use the

collected accelerometer data and divide it into uni- and bigrams appropriately using

the touch information and perform a five-fold cross validation for each user. The

average across all users is presented in Figure 4.11.

Clearly, both uni- and bigram prediction proceeds at a rate well above random

chance, with bigrams performing better overall as a factor above random chance.

This bodes well for sequence prediction using bigrams. However, when we conducted

experiments where we test and train on different users, or when we introduce move-

ment noise, the models fail, either performing a small fraction greater than random

chance, or worse. As we will discuss below, when using such models in an HMM,

they were unable to infer the input, even after 1,000 guess attempts.

Comparison to TapLogger In the case of unigram inference for PINs, we can

compare the results of TapLogger [117] to our own since the authors used a numeric

number pad, much like PINs. Recall that TapLogger uses gyroscopic data to infer

where on a touchscreen a tap event occurred, while we use accelerometer data. Fig-

ure 4.12 presents the comparisons for four guesses (described as coverage in [117]).
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Figure 4.12: Prediction results for PIN pad as factor greater than random guessing,
included (in smaller text) results from TapLogger [117].

Although, TapLogger performs well, our technique is comparable to TapLogger’s re-

sults, either performing nearly as well, or slightly better, in all instances.

Hidden Markov Model Inference With models for individual touches or swipes,

it is now possible to construct a Hidden Markov Model (HMM) that selects the most

likely (maximum a posteriori) set of touch or gesture input. For the experiment, we

use a transition matrix trained from a set of 50 PINs and 50 patterns, and use bigram

models. We found that prediction results for unigrams were very poor.

The results of the experiment are presented in Figure 4.13. On the x-axis is the

number of guesses (or paths in the HMM attempted) and the y-axis is the prediction

result. The most likely path is straightforward to obtain. To generate additional

reasonable alternate high scoring paths from the HMM, we order the set of labels at

each position by their max-marginal probabilities4 and employ non-max suppression

to get a diverse set of guesses. The details of the technique can be found in [87].

At 20 guesses, the results for both PINs and patterns are very good. Patterns can

be inferred with an accuracy of 26%, and PINs with an accuracy of 40%. Note this

is a cross-validation for a single user on a single device. We ran similar experiments

4A max-marginal m(`i) for label `i at position i in a sequence is obtained by maximizing over
the label possibilities in the other positions in the sequence: m(`i) = maxj 6=i p(`1, . . . , `k|o1, . . . , ok).
This can be done for all labels and all positions as efficiently as computing the single most likely
assignment [62].
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Figure 4.13: Prediction accuracy for bigram HMM over multiple guesses for patterns
(left) and PINs (right), and the 20 guess threshold is indicated with a dashed line.
The shaded trend lines are individual users. Note that PINs outperform pattern
prediction, likely due to the limited number of transitions and shorter sequences.

where we cross train on all users and test on a single user: The results were greatly

depressed, and the actually PIN or pattern is rarely predicted. Similarly, we applied

these techniques to data while the users were walking, and, again, we found that the

HMM infers input very poorly, predicting with an accuracy far below 1%.

These results suggest that the capabilities of attackers are mixed when limited

labeled data is available. In one sense, if the attacker has sufficient training on a

single user in a controlled setting, the attacker would likely do very well. However,

adverse situations, such as movement noise or limited training, greatly affects the

models and may even render them completely ineffective.

4.8 Sensors and Device Security

Given these results and previous senor-based side channel results [25, 86, 117], clearly

any effective security mechanisms for touchscreen devices with movement sensors

must deny untrusted applications access, to movement sensors (particularly, the ac-

celerometer) when sensitive touchscreen input is being provided to other applications.

At the same time, it may be equally undesirable to restrict access to the accelerom-
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eter (and other sensors) when sensitive input operations are not being performed.

Many legitimate applications are designed to run in the background at all times (e.g.,

pedometer applications), and preventing such applications from gaining access to the

movement sensors at any time, or requiring the user to manually shut them down

before performing any sensitive operation, would greatly reduce their appeal.

One approach might be to carefully vet applications that use sensors for malicious

behavior before allowing them to be installed or before making them available in

application markets. Unfortunately, this approach is logistically impractical at scale

and, in any case, would require a level of analysis that ultimately reduces to the

Halting Problem. Despite the clear drawbacks, this is the approach taken by Apple

when vetting applications for the App Store. An alternative approach, as exemplified

by Google in the Android App Market, is to label applications that access sensors

(or other services) using a permission model; however, this is also insufficient because

users may either ignore such labels or do not understand their implications.

Another approach may be to restrict the sampling rate of the sensors, as suggested

in [86]. However, in our experiments, even with a relatively low sample rate of 20 hz,

prediction accuracy was surprisingly high and on par with devices with sample rates

at 50 hz or more. Such a technique would likely require a reduction in sample rate

below the functional level required by legitimate applications.

We propose an alternative strategy. Applications installed by the user that require

access to movement sensors, however frivolous they may seem, should be able to use

them and use them at the highest sample rate allowed. But, the sensors should be

disabled (or untrusted applications denied access to them) whenever a trusted input

function – such as password entry – is being performed.

Unfortunately, the security models implemented by current hand-held platforms

do not allow temporal access control over sensors; however, context-based security

rules proposed in [85] and [29] could be adopted in this way. Currently, applications

declare what access they need once (typically when they are first installed by the user

or first run), and, from that point onward, have essentially unrestricted, permanent
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access to everything they asked for at any time they wish.

Although current mobile platforms do not support temporary revocation of sensor

access, it could be implemented in a straight forward way, e.g., via a system call

available to trusted input functions to obtain and revoke exclusive access to sensors.

One approach would be for this system call to cause any untrusted application that

requests access to a sensitive sensor to block (or fail) until the sensitive operation

has concluded, perhaps using strategies in [18]. Alternatively, untrusted applications

could simply be suspended for the duration of the sensitive input.

Finally, given that smartphone permission and security models do not account

for sensor-based side channels, is there mechanisms in place to detect one? Unfor-

tunately, there is not automated method currently shipping with smartphones to

detect a sensor based side channel, but numerous proposal from the research com-

munity can be used to aid detection. Foremost, techniques from flow control [42]

and inter-process communication monitoring can be applied here by analyzing where

information from sensors are being processed, including if sensor readings are being

sent over the network, and also which application is request the information. Addi-

tionally, techniques from malware detection may also be able to detect a sensor-based

side channel. Particularly, detectors that monitor application power usage [67] may

be effective because the increase in sensor activity should correlate with an increase

in power usage.

4.9 Conclusion

In this chapter of the thesis, we demonstrate how the smartphone touch interface,

when combined with on-board sensors, leak significant information about user input.

We show that the accelerometer sensor is capable of functioning as a side channel to

learn secure input, and our results indicate that a surprising amount of information

is inferred, even when movement noise is introduced. We show that there is consis-

tency across users and devices, despite varied sample rates, and the construction of
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a sensor-reading-to-input dictionary is possible; however, in less controlled settings,

such dictionaries may be ineffective. Further, we show that sequence predictions, in

the form of a hidden Markov model, can be applied to this problem if insufficient

labeled accelerometer readings are available, but such models, again, seem prone to

false predictions caused by movement noise and cross-user training.

Given the results presented herein and previous results using the accelerometer

sensor [86] and gyroscopic sensor [25, 117], it is now clear that the security model for

on-board sensors on smartphones should be reconsidered. These and previous results

should be considered conservative estimates of the potential threat: Enhancements to

features and larger data sources will inevitably lead to greater fidelity side channels,

as was the case for the study of keyboard acoustic side channels from the supervised

learning strategies in [11] to the unsupervised learning strategies in [120]. It is clear

that applications that have access to the accelerometer sensor should not be able

to read from the sensor while the user is providing sensitive input. But current

mobile platform permission schemes are insufficiently to specify this; they provide

applications with “all or nothing” access to every sensor they might ever need to use.

Instead, the permission scheme and enforcement mechanism should restrict or allow

access to sensors based on context, as proposed in [85] and [29]. Untrusted applications

that require access to a sensor should be granted access only when sensitive input

operations are not occurring.

Finally, these results also speak to the necessity of evaluating smartphone security

in a multifaceted manor. On first blush, movement sensors seem benign, but if access

is granted pervasively, information can be leaked to malicious applications. This at-

tack is enabled by the interaction layer — the act of holding the phone while touching

the screen — which is not considered in the larger security model on smartphones.

Clearly, the interaction layer must also be incorporated into future security analysis

to account for such powerful and surreptitious side channels.
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Chapter 5

Related Work

In this chapter, we review the related work for this thesis. For background informa-

tion on the Android operating system and its security properites, we refer the reader

to Chapter 2. We begin this chapter by first presenting related work on smartphone

security, and we discus how these techniques could be applied to prevent the side

channels discussed in previous chapters. Following, we present related work on side

channels, from traditional timing side channels on cryptographic protocols through

related work on smartphone oriented side channels. Finally, we discuss other appli-

cations of movement sensors in the computer science literature, particularly focused

on security biometrics.

5.1 Smartphone Security

Security research on modern smartphones is a relatively new domain. While re-

searchers have analyzed security threats to the cellular network [112, 113] and to con-

ventional (non-smartphones) cell phones, such as the “SMS of death” attacks [79, 80],

the study of security and privacy on modern smartphone OSes has only reached ma-

turity in the last few years. In many ways, the security mechanisms on smartphones

are borrowed and adapted from classic computer security, as noted in a recent sur-
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vey [63]; however, due to the controlled hardware and software environment, the

deployment of smartphones have allowed for the adoption of security techniques not

easily applied on traditional computers, such as tight application sandboxing and

strict code-oversight.

Recently, smartphone security research is greatly influenced by the popularity and

openness of the Android operating system for smartphone devices [53] and its security

mechanisms [101, 100], such as java-based application sandboxes, permission policy,

and graphical password scheme. While Apple’s iOS operating system for iPhones

predates Android, iOS is closed-source and highly controlled by Apple, limiting se-

curity research to externally observable experiments, such as network based packet

capture analysis [102, 111, 110]. Although, recent research on binary dissassemblers

for iOS applications have allowed for more fine grain analysis [41].

Current research on smartphone security can be divided into three main categories.

First, researchers are interested in the egress of potentially private information on

smartphones to untrusted providers. This analysis has taken the form of dynamic

taint-tracking [42] and static code analysis of de-compiled application binary [84]. The

second research thrust investigates Android’s permission policy [12], its failings [33,

45], and how to improve it [18, 29, 85, 50, 97, 119]. Finally, as a general computer

platform, researchers are interested in protecting smartphones from malware by either

detecting or mitigation such malicious programs/applications [27, 67, 92].

As it relates to the contributions of this thesis, none of the prior work on smart-

phone security enhancements fully mitigate the side channels investigated herein.

Particularly, the smudge attack is an external attack, and the proposed software

and dynamic/static analysis techniques are of no use in mitigating such an attack;

however, sensor-based side channels could be detected with techniques from taint

tracking. If a taint were placed on data-elements generated from sensitive sensors,

such as the accelerometer, then an alert could be raised if such data ever reached

the network interface. Even still, this may not be sufficient if a covert channel is

employed.
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Proposals to enhance Android’s permission system, particularly proposals that

have context oriented policies (such as [29, 85]), may also aid in mitigating sensor-

based side channels. We advocate a similar approach when discussing sensor-based

side channel mitigation strategies. Essentially, we argue that policies should be in

place to limit, or block, access to sensors during critical user input, and a context

oriented policy procedure may enable such specifications.

Finally, malware/virus detection methods for smartphone devices, particularly

those based on power analysis [67], could be used to detect a sensor-based side channel.

Reading from the sensors requires additional power, and an application that does so

repeatably and often could be considered anomalous.

In the rest of this sub-section, we review related work on smartphone security.

First, we discuss security research focused on information leakages, and, following,

we present research on Android’s permission policy. Finally, we discuss recent work

on smartphone malware detection.

Detecting and Mitigating Information Leaks on Smartphones

Smartphones contain a slew of private information: Smartphones are aware of general

communication, email, voice, and text, as well as the location of their owners. Further,

smartphones have become a primary service for downloading third-party applications

(or “apps”), which are published in “App Stores.” Many of these apps have legitimate

access to personal information, either informing the user directly during runtime, as

is the case with iOS, or at install time, as is the case with Android. What these apps

then do with this information is opaque to the user, and, further, many apps come

bundled with advertisement software, which is generally third-party to the application

developer and even further removed from user control.

With so many potentially “untrusted” programs running on the smartphone, it is

important to understand how these programs process and use sensitive information.

Particularly, we would like to know if an application intentionally (or unintentionally)
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leaks sensitive information, such as your location, off the device.

Taint-Tracking and Network Exfiltration

In seminal work, Enck et al. developed a novel system for investigating such issues.

They developed TaintDroid [42]: A dynamic taint analysis [93, 118], engine designed

to run on the Android operating system. Taint analysis (or “taint tracking”) is a form

of information flow analysis where sensitive data is marked (or tainted) and tracked as

data is used by various functions and routines. TaintDroid tracks information system

wide, as data is written to disk, manipulated, restructured into new data-forms, or

communicated over the network. In this way, Taintdroid determines if private data

ever reaches the network interface, and, thus, is leaked off the device. In a survey of

30 randomly selected apps from the Android market place, Enck et al. identified 105

instances of apps transmitting “tainted” data, and more surprisingly, they discovered

that 50% of the apps tested communicated users locations to third-party advertisers.

Extending TaintDroid, Hornyack et al. developed AppFence [50] that tries to

address information leakage by detecting illicit information flows, replacing sensitive

data in those flows with “shadow data” and blocking transmission of any sensitive

data. They noted that using shadow data could adversely impact application usage.

To measure the impact of shadow data, they tested AppFence on 1,100 popular

“permission hungry” applications from the Android market. Hornyack et al. found

that 66% of the applications functioned as intended, even with shadow data.

In a similar study, Beresford et al. developed MockDroid [18] for Android. Their

system implements a small monitor that “mocks” system resources that provide sen-

sitive data, such as the GPS receiver. When an application accesses a resources, it

will either receive fake data or the monitor will report that the resource is empty or

unavailable. If the application does not function as a result, the user can explore the

trade-off between usability and privacy, perhaps allowing access in certain cases and

denying access in others.
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Android apps are not unique in violating user’s trust by leaking sensitive infor-

mation off the device. In a study conducted by The Wall Street Journal (WSJ) using

network packet monitoring, more than 50% of the 101 apps tested on an iPhone dis-

seminated the iPhones unique device ID (UDID) [111, 110], which could be used to

track individuals via their browsing habits. The WSJ findings was supported by a

concurrent independent study using a similar methodology [102]. Egele et al. later

developed PiOS [41], an Objective C decompiler and static analyzer that can inspect

iPhone apps for potential security leaks. Egele et al. similarly found that more than

half of the apps tested leaked the UDID to third-party apps, enabling detailed (and

completely transparent) user profiling.

As it relates to the information stealing side channels proposed in this thesis,

clearly this analysis is ineffective in mitigating a smudge attack. However, taint-

tracking of sensor data could act as a sensor-based side channel detection technique

by tracking sensor readings through the system (or providing mock sensor readings).

While it may not be possible to know the intent of an application that access the

sensor, an application that is using a huge amount of sensor information could be

viewed with suspicion, especially, if the application then transmits sensor information

over the network.

Enhancing Android Permission System

The study of Android’s permission system led researchers to identify key failing of

the security model; particularly, the permission system does not account for inter

process communication (IPC) properly. That is, an unprivileged app can request

a more privileged app to perform an action that the unprivileged app cannot take

given its permission level. Such violations are described as a privilege escalation

attack [33], and researchers quickly proposed many different systems for addressing

this violation [24, 28, 45, 38, 85].

However, in some cases, it is advantageous for privileges of one application to be
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used by another. Ongtang et al. described a hypothetical PayPal applications whose

payment interface should be legitimately accessed by other applications to make pur-

chases; however, there is no policy mechanisms to handle cross-application interface

access. As a result, they proposed Saint [85], which extends the policy/permission

framework to take into account the permissions of IPC access requests.

Following, systems such as XManDroid [24], CommDroid [28], Quire [38], and IPC

Inspection [45] have all been proposed to address the threat of privilege escalation

attacks. The key similarity across all these systems is that they monitor information

flowing across the IPC and track the message-originating applications to recognized

violations. Felt et al. in [45] noted that such privilege-escalation attacks are not

unique to Android and that modern browsers implement similar permission delegation

schemes and application sandboxes for accessing computer resources (e.g., the camera,

microphone, location, etc.). They further implemented their system, IPC Inspection,

on the browser interface.

Some of these systems also propose fine grain access control enhancement for An-

droid’s permission system . For example, Saint [85] proposes extending the permission

policy framework to take into account broader runtime states, such as network con-

figuration and time-of-day. Similarly, permission system extensions were proposed

by Conti et al. in CRePe [29], which allows for fine-grain policy specification that

takes into account context. Other proposed systems offer different levels of fine-grain

access control (YASSE [97], TISSA [119], Apex [81], and etc.), where a user can ei-

ther specify that an app is allowed to use a subset of the permissions, or allow for

context-based runtime selection of when permissions are available.

Context oriented systems, particularly, could be a first-line of defense to mitigate

sensor-based side channels. For example, a policy that dictates that sensors must be

turned off until the phone is unlocked would mitigate attacks against the unlock PIN

or password pattern. And further, if sensor access is eliminated during phone calls,

private information, such as credit card numbers, communicated using the telephone

keypad may also be protected.
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Malware and Virus/Worm Detection

As much as the smartphone is unlike a traditional computer, it is also alike a tra-

ditional computer. Smartphones still run an operating system capable of executing

arbitrary code from unknown sources in unintended ways. As a result, smartphones

suffer from malicious code outbreaks, which have occurred with some regularity; al-

beit, not in as great a number or frequency as traditional desktop/laptop computers.

Incidents, such as the DroidDream rootkit [15, 106] on Android and iKee.B [90] on

iOS, have motivated researchers to develop tools that can detect malware installations

on smartphones and prevent widespread outbreaks. However, this is particularly

challenging on smartphones because of limited computation and power resources.

Clearly, if an anti-virus application renders the phone unusable because it draws

down the battery, users are unlikely to use it.

One way to avoid expensive on-phone malware detectors is to analyze application

for threats when they are uploaded to the application marketplace, the online repos-

itory for smartphone applications. Enck et al. proposed using lightweight checks

that can be performed when applications are uploaded to the market. Their system,

Kiren [43], performs static, rule-based checks to applications to identify undesirable

security configurations. Enck et al. inspected 311 apps using Kiren and found 5 to

have undesirable configurations. With respect to sensor-based side channels, access

to a sensor is not considered undesirable withing Kiren, although the rules may be

adapted to compensate. Post installation, information flow analysis, such as Taint-

Droid [42] and related techniques, may also detect malicious apps that once installed

attempt to communicate private information.

Another mechanism to avoid power issues was proposed by Oberheide et al., who

suggested moving smartphone malware detection to the cloud by virtualizing users’

smartphones [83, 82]. The key idea is that the execution state of the smartphone is

duplicated remotely in a virtual machine and malware detectors can now function

without any resource constraints. A prototype of a similar systems was implemented

87



by Portokalidis et al. called Paranoid Android [91], and they demonstrated that

this strategy is practical and efficient. A single server is capable of handling a large

number of virtual smartphones. However, there are significant privacy issues to this

approach; namely, users must fully trust their cloud provider to ensure the privacy

of all the information stored on their smartphones. A significant portion of that

information is highly sensitive, such as location information, and many users may be

uncomfortable duplicated it on the cloud, even if there is reasonable security tradeoffs

for the loss of privacy.

Fortunately, there is still plenty of on-host malware detection techniques that

can be applied without greatly affecting power performance. Bickford et al. suggests

that there might exist an energy-vs-detector “sweetspot” where the malware detection

techniques and power consumption trade off is acceptable [19]. In their experiment

they showed that with power overheads of just 6-9%, they can detect most known

smartphone rootkits; however, Bickford notes that data-driven attacks, such as would

be the case for a sensor-based side channel, is still prohibitively expensive to detect

using their techniques.

Yet, the power consumption of an infection, itself, could also be an identifier of an

infection. Liu et al. proposed VirustMeter, a system that monitors power consump-

tion to detect anomalous applications [67]. Such techniques are most likely to detect

sensor-based side channel because of the anomalous power draw caused by overuse of

the sensors. However, there are a number of applications that might use the sensor

heavily, such as the lightsaber app [55], that could cause false positives. Further, as

smartphone chip sets continue to improve, the power draw of the senors will likely

decrease. This could lead to sensor-creep – applications continually accessing the

sensors, even if unneeded, because there is minimal power side effects – which would

render anomalous power monitoring ineffective.
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5.2 Side Channels

Side channels have been studied extensively in computer science. Generally, a side

channel is a side-effect of the security mechanisms that leaks information in an un-

intended way, and side channels have been exposed in wide varieties of input mecha-

nisms [11, 120], cryptographic protocols [60], and even dot-matrix printers [14].

In this section, we review the related work on side channels, beginning with tim-

ing side-channels on cryptographic implementations. Next, we review physical side

channels, i.e., side channels that are a consequence of physical interaction with a se-

curity mechanism or input device. Finally, we will review smartphone side channels,

including previous work on sensor-based side channels on smartphones.

Cryptographic Side Channels

Some of the earliest research on side channels was in the context of cryptographic

protocols. The cryptography, itself, is sound; that is, the mathematical analysis of

the cryptographic mechanism is secure. However, the implementation of the crypto-

graphic protocol, either in code or on particular hardware, is flawed in a way that if

an attacker has a stopwatch and can choose the text to be encrypted (or decrypted),

he/she can discover the secret key. Since the secret key affects the computation time,

an attacker can learn a few bits of information upon each encryption (or decryption)

using different cypher texts. Again, such an attack is exploiting a side-effect of the

implementation of the cyrptogrpahic protocol, not the cryptographic protocol itself,

which mathematically remains provably correct.

Paul C. Kocher, in seminal work, demonstrated timing side-channel attacks on

a number of standard cryptographic schemes [60], including Diffie-Hellman [39] and

RSA [96]. As a result of this work, cryptographers began focusing not only on the se-

curity of the mathematics of the cryptographic procedure but also the implementation

of the cryptographic algorithm [21].

Despite knowledge of timing attacks, it was thought that remote systems would
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likely be safe because of timing noise caused by network delay. This assumptions was

shown to be false by Brumely and Boneh in [23] where they demonstrated remote

timing attacks on the OpenSSL [9] implementation of RSA and the Chinese Remain-

der Theorem [98]. Similarly, remote timing attacks were also shown against AES by

Acriçmez et al. in [10].

Timing evidence is not the only aspect of cryptographic protocols that can expose

the secret key. Kocher et al. also demonstrated that power analysis, the amount of

power draw of the CPU during certain operations, can also act as a side channel

and reveal secret keys [61]. This technique led to similar efforts on electromagnetic-

emanations from CMOS gates [69], as well as techniques to mitigate such power-

analysis side channels [31].

Physical World Side Channels

Side channels resulting from the programming implementation of a security mech-

anism are one aspect of surreptitious information leakage of side channels. More

related to this thesis is the body of work on physical side channels: These are side

channels that exist because of side-effects of the physical interaction with a security

mechanism or input device.

Perhaps the most simple example of a physical side channel is the “should surf.”

A should surf is when an attacker peaks “over the shoulder” of the victim while

he/she is entering (or accessing) secure items. While the should surf appears to be a

fairly clumsy side channel, researchers have investigated using video of a user typing

to learn the input [16]. This task may seem trivial, but is actually a lot more difficult

than one would expect, requiring comprehensive vision algorithms, such as motion

tracking, as well as machine learning techniques and sentence reconstruction.

Auditory cues can also act as a physical side channel. Here, the interaction with

the security mechanisms has auditory side effects that can reveal some secure input,

such as the beeping of buttons while a user enters their PIN [46]. The best known

90



form of this side channel is acoustic emanation attacks on keyboards [11, 120]. Here,

the attacker records the sound of a user typing on a keyboard, and by leveraging

subtle auditory differences in the frequency domain between different key presses, the

attacker can infer the user input.

Finally, physical side channels also exist in the electromagnetic (EM) spectrum.

Computing devices emanate subtle EM signals that can belie the input. This side

channel has been most famously demonstrated against CRT computer monitors, so

called phreaking [40].

In the rest of this sub-section, we review the related work on physical side channels.

First, we discuss visual side channels, and following we discuss audio and EM side

channels.

Visual Side Channels

There has been two significant works on visual side channels related to this thesis.

The first, mentioned previously, is a video-based side channel used to learn input from

users typing on a keyboard. Balzarotti et al. developed a system, ClearShot [16] that

uses a video recording of a victim typing to reconstruct the keyboard input. They

note that webcams are becoming ever more present, and since publication of [16] in

2008, video cameras are nearly ubiquitous, including cameras on smartphones. Using

a combination of vision analysis and machine learning techniques, Balzarotti et al.

where able to recover the text at a rate of 47% in unsupervised settings and 74% in

supervised settings.

Another visual side channel is teleduplication attacks [64]. Proposed by Laxton

et al., they demonstrated how an attacker can reconstruct a key for a physical lock

by just inspecting an image of the key, even taken over a great distance. Simple

vision techniques are applied to the image to extract the bitting code of the key, i.e.

the heights of the ridges and grooves that describe the key. Once the bitting code is

possessed, the attacker can duplicate the key at will; of course, the attacker still needs
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to know which lock the key opens. A similar problem arises with the smudge attack:

Although an attacker may posses the users password pattern following a smudge

attack, he/she must also posses the victim’s smartphone to leverage this information.

Visual side channels extend beyond the human visual spectrum. In interesting

work, Mowery et al. demonstrated that thermal cameras can also be used as a side

channel against touch input [78]. Using a keypad used in many ATM’s, Mowery

et al. imaged the residual heat and constructed an automated system to greatly

reduce the search space for victims PINs. In their experiments, they used a plastic

keypad, although they did attempt to use a metal keypad; however, they found

that heat transfer was too great on metal keypads. Even light touches caused large

swaths of the thermal image to read hot, and the dissipation rate was too slow to

process the image accurately. We posit that if thermal imaging attacks were applied

to smartphone touchscreens, a similar issue would occur. Not only does the phone

generate its own heat (e.g., via the back-light), but the glass screen likely has similarly

low heat dissipation rates, as compared to plastic.

Finally, it should be noted that the machine-vision analysis for the visual side

channels discussed above could be applied directly to the smudge attack, particularly

if it were to be automated. Other vision analysis algorithms from facial recognition

techniques [57, 48] or optical character recognition [52, 70, 76], would be applicable.

Such automated techniques are especially dangerous if an attacker possessed many

successive images (e.g., via video surveillance) of a smartphone smudge.

Audio Side Channels

Originally proposed by Asinov et al., keyboard acoustic emination attacks are perhaps

the best known audio side channel [11]. They demonstrated that inspecting the

frequency domain of keypresses can reveal which key was typed. That is, if an attacker

were to posses an audio recording of a user typing, and with some initial training, an

attacker can determine what was typed.
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This work was expanded and greatly enhanced by Zhuang et al. in [120]. The first

key enhancement made by Zhuang et al. was using voice recognition features, rather

than just frequency domain analysis. More precisely, they applied the Mel Spectrum,

a melodic based signal-filtering technique that highlight subtle tone inflections. Ad-

ditionally, Zhuang et al. demonstrated their attack in unsupervised settings. That is,

they do not require extensive training and analysis, and instead use a process where

the model first groups keystroke sounds into similar buckets and then reconstructs

the words using corrections from features of English language (e.g., the frequency of

certain vowels). Amazingly, using a sample 40 minute recording, they were able to

reconstruct the input with an accuracy well over 90%.

In this thesis, the machine learning analysis presented in the sensor-based side

channel is supervised. That is, we require a training set to learn the features of the

acclerometer readers that map to particular inputs. Extending this technique to un-

supervised settings is challenging, particularly without a model of human tendencies.

The knowledge that keyboard input was in English is what really enables the unsu-

pervised learning in [120]. However, if the sensor-based side channel were applied to

soft-keyboard input, then such advantages could come to bear.

It should also be noted that just the timing of the keypresses, which can be inferred

from acoustic emanations (or by inspecting network packets [103]1), can reveal user

input. Kune et al. showed that a timing attack on PIN input captured from acoustic

emanation from the auditory feedback provided by number pads [46], such as those

in ATMs, can reduce the search for a victim’s PIN.

Finally, beyond audio from input provided on keyboards and PINs, audio side

channels have also been applied to printers. Backes et al. showed that the sound

of a dot-matrix printer can be used to infer the text of what is being printed [14].

1Although not a physical/auditory side channel, keystroke timing attacks are an interesting
side channel worthy of some discussion. Song et al. showed that SSH’s (secure shell’s) protocol
for encrypted each character in a single packet revealed the timing of the keypresses to a remote
observer [103]. They then demonstrated how to use these timings to reconstruct the password, or
reduce the password search space significantly.

93



By applying similar machine learning techniques, they were able to reconstruct the

printed text with an accuracy up to 95%, when assuming some contextual context.

Again this is an example of a side channel that leverages information that on first

blush may seem benign, but actually contains a rich source of information.

EM Side Channels

As mentioned previously, electromagnetic (EM) side channels on cryptographic pro-

tocols have been demonstrated previously [69]. However, other aspect of computers

emanate EM that can constitute a side channel, for example the keyboard.

Vuagnoux and Sylvain showed that keyboard EM emanations are sufficient to

recover 95% of the keystrokes [114]. Essentially, the circuit length registered on

each keypress — a pressed key connects a circuit that allows the keyboard controller

to know which key was pressed — emanate EM signals at different and recognizable

frequencies for different keys. They found that the side channel is effective at distances

up to 20 meters and across a wide variety of keyboards, including PS/2, USB, and

even laptop keyboards.

Perhaps the most famous2 EM side channel is Van Eck phreaking [40]. Here,

the side channel is enabled by EM signals emanating from computer monitors. For

example, in classic cathode ray tube (CRT) monitors, the act of projecting electrons

on the screen to render an image result in a lot of EM emanations. These emanations

can then be used to reconstruct the image on the screen with surprisingly high fidelity.

5.3 Smartphone Side Channels

In previous chapters, we reviewed some of the related work on smartphone side chan-

nels, and in this section, we further that discussion. First, we discussed the primary

related work on sensor-based side channels, including the three previous publications

2Van Eck phreaking is a key narative device in many fictional novels and movies; perhaps most
noteworthy, phreaking played an important role in Neal Stephenson’s Cryptonomicon novel [105].
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that studied using movement sensors as a side channel: TouchLogger [25], TapLog-

ger [117], and ACCessory [86]. Following the discussion of movement sensor oriented

side channels, we present other related work on smartphone side channels.

Smartphone Sensor-Based Side Channels

As noted in Chapter 4, just three previous publications have investigated using on-

board sensors to suriptitiously learn user input [25, 86, 117]. However, just one

publication focuses on using the accelerometer sensor solely, while the others rely

primarily on the gyroscopic sensor to infer touch input.

While both sensors, the gyroscopic sensor and the accelerometer sensor, measure

smartphone movements, the sensors measure subtly different actions. The accelerom-

eter measures movements that occur when the phone is shifted (or accelerates) in

three-dimension space, and the API returns values in meters-per-second-squared. The

gyroscopic sensor, on the other hand, measures the pitch and roll angles of the device

about a vertex oriented on the upper corner of the device. There are movements that

both sensors measure with equal fidelity, such as tilting the phone forward, but there

are also actions that one measures better than the other. For example, the accelerom-

eter is not privy to constant velocity movements, and the gyroscope is unaware of

movements that do not change the orientation of the phone.

As it relates to the sensor of choice for performing a sensor-based side channel,

the results of this thesis and previous studies suggest that both previously studied

sensors (the gyroscope and accelerometer) are capable of inferring user input and that

these sensors are capable of capturing subtle movement, as what occurs during user

input. Clearly, based on results in [25] and [117], the gyroscopic sensor should be

considered sensitive, and now, our work demonstrates that the accelerometer should

also be considered so and is much more sensitive than previously thought in [86].

One area where this thesis expands significantly on previous work is in the depth

and breadth of the data set collected as well as in our novel feature extraction tech-
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nique. The publications outlined above use small sample sets, generally collected

from 3 to 4 users ([117] does use 10+ users in some of their experiments), and none

consider the effects of movement noise, such as what occurs when a user is walking

and using their smartphone. We collected a large data set consisting of 24 users in

both controlled settings, while the user is seated at a desk, and in an uncontrolled

settings, while the user is walking. As such, we are able to investigate the practicality

of a sensor-based side channel attack at a deeper level. Particularly, we are able to

speak to the capabilities of an attacker with respect to cross-training using many

users and doing so in diverse movement scenarios.

Gyroscopic Side Channels The first published results on using smartphone sen-

sors to infer user input was in TouchLogger [25], by Cai et al.. Their system used the

gyroscopic sensor to measure subtle shifts in the pitch and roll of the smartphone as

a user enters information on large number pad that fills the touchscreen. The user

is instructed to hold the phone in one hand while striking it with their finger on the

other hand. This causes the phone to shift and rotate, which is captured by the gy-

roscope. Cai et al.’s results where extremely encouraging, with reasonable training,

their system can infer the region touched with 70% accuracy.

Following TouchLogger, Xu et al. published TapLogger [117], which is a clear

extension to the work in TouchLogger. Similarly, Xu et al. used gyroscopic data

to infer where a user touched on keypad that resembles a telephone dial pad. They

showed that TapLogger can infer PIN-like input within three inference steps; that

is, upon the successive, non-overlapping predictions for each digit, all digits of the

PIN were covered. Unfortunately, Xu et al. did not use their model in a sequence

predictor, such as a hidden Markov model, to determine the most likely four digits.

Instead, after three predictions, there is three possible values for each digit in the

four-digit PIN which results in 81 possible values.

In our analysis of sensor-based side channels using the accelerometer sensor, we

were able to do a rough comparison to using the gyroscopic sensor based on the
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published results in [117]. The dial pad interface used in TapLogger matches roughly

(but not precisely) to the PIN pad used in the experiments in this thesis. The results

are presented in Section 4.7, and we found that the accelerometer worked nearly as

well, or better, at inferring key presses. This, again, suggests that the accelerometers

capabilities as a side-channel is on par with the gyroscopic sensor.

Accelerometer Smartphone Side Channels Owusu et al. proposed ACCes-

sory [86] where they show that the accelerometer can be used to infer short sequences

of charachters inputted on a soft keyboard, a keyboard displayed on the touchscreen.

Our work differs from Owusu et al. in that we also demonstrate that swiping can

be inferred from accelerometer data in addition to touch input. Our work furthers

some of the techniques in ACCessory, particularly as it relates to sequence predic-

tion. ACCessory was able to classify input strings of length 6 with 60% accuracy, but

needed 212 guesses to achieve that result. In a similar experiment with PIN entry, we

showed that the PIN entered can be classified with 40% accuracy within 20 guesses

on average (see Figure 4.13).

In interesting related work, Marquardt et al. showed that smartphone accelerom-

eters can infer more than input occurring on the phone. They developed (sp)iphone

that collected accelerometer readings while the smartphone is placed next to a key-

board [73]. The vibrations of a user typing on the keyboard is recorded by the phone

and generally interpreted to predict what was typed on the keyboard. This technique

is similar to acoustic keyboard side-channels that use audio recordings to surrepti-

tiously learn user input [11, 120], as well as keystroke timing techniques [103].

We also note that Xu et al. in TapLogger [117] do investigate the accelerometer

sensor with respect to tap detection, but the accelerometer is not used to infer input,

just the timing of a tap events. Their technique, unfortunately, seems to be highly user

dependent, relying on statically thresholding. However, this strategy may be useful

when performing sequence prediction. Currently, we assume that there is a method

for dividing the accelerometer appropriately; however, upon further investigation into
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the taplogger accelerometer tap event detector, we found that the reading frequency

of the accelerometer on our smartphones were insufficient to directly apply their

strategy, requiring further investigation in future work.

Other Smartphone Side Channels Other (non-movement) sensors on smart-

phones can also be used in side-channels. For example, the microphone and camera

have been proposed as a side channel. Most related to this thesis is Soundcomber [99]

by Shlegel et al.. They showed that an app that just has access to the microphone is

able to perform a number of voice and tone recognition actions. Soundcomber uses

two voice recognition processes: First, it detects when phone call is active using the

microphone, and then it performs simple signal analysis on the recorded touch-tones

to learn a victims secret information, such as a PIN or credit-card entered through

telephone customer service.

However, Shlegel et al. designed Soundcomber such that it does not have access to

the Internet, and thus, it must communicate the secret data off the device via indirect

methods. To do so, Shlegal et al. identified a covert channel on Android: By modu-

lated the phone’s vibration and sound levels, the secret PIN or credit card number can

be communicated to a colluding application that can read the volume/vibration lev-

els. The colluding app, which has access to the internet, then communicates the secret

information off the device. This covert channel is another example of a privilege esca-

lation attack; however, it does not use the standard IPC techniques described above

and would avoid detection by most of the solutions. XManDroid [24], however, does

address these concerns, and includes the covert channel proposed by Soundcomber in

its security model.

Two other proposal have investigated non-movement, sensor-based side channels.

Xu et al. considered information that can be leaked if a malicious app has access to

the smartphones camera [116], and Cai et al. investigate sensors sniffing in earlier

work, including the microphone, camera, and GPS receiver [26].
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5.4 Sensors and Biometrics

Accelerometers have been previously studied in other areas of computer science, par-

ticularly as a mechanism for user interface enhancements [66, 72, 89], as a source of

data mining [17, 66, 75, 94, 95], and even as a part of health care [68, 104]. In this sec-

tion, we instead focus on the use of sensors to enhance security, particularly focused

on using sensors as part of biometric identification system, where the movement of

an individual performing a task distinguish and identify that person. As it relates

to the contributions of this thesis, this related work speaks to smartphone sensors

capability to aid security; however, the capability to capture biometric information

could also further privacy concerns.

As a security enhancement, consider a security procedure that requires users to

not just provide some secret input (such as a pattern), but also provide it in such

a way that is unique to the individual. This thesis showed that the accelerometer

sensor is capable of inferring input surreptitiously; however, it may also be able to

collect information about users that enhance the security procedures.

For example, an unlock application could combine the “way” a user provides a

pattern (as measured by the accelerometer) with checks that ensure the pattern is

correct. In fact, researchers seem to be converging on systems like this, but have yet

to apply sensor readings to the pattern authentication process. For example, De Luca

et al. proposed an enhancement to the password pattern where variations in the way

a user traverses the pattern, e.g., taking slightly different angles to connect two dots,

is used to enhance the authentication procedure [34].

Applying sensor readings as a biometric authentication has been proposed in the

literature. Matsuo et al. proposed techniques for using the arm swing action that

occurs when answering a smartphone as a form of authentication [74]. They showed

that the action of moving the phone from the users side to their head to start a

conversation is reasonably unique to an individual. Although they did not implement

their system on smartphones, they found that there is a wealth of information to train
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on, and their system only incurred an error rate of 4% in a study of 12 people over 6

weeks.

Similar results were found by Contiet al., who implemented a transparent authen-

tication system on smartphones based on how a user answers a phone call [30]. And

Liu et al. extended their user interface accelerometer device, uWave [66], to per-

form gesture based authentication [65]. Other movement-based biometrics have been

investigated using accelerometers. Mäntyjä et al. demonstrated that accelerometer

measurements of a user’s walking gait can function as a biometric [71]. Here, the

speed and periodic properties of a user’s walking pattern is used as the biometric

identifier.

Advancements to (in-space) gesture movement authentication techniques3 were

proposed by Dennis Guse in his master’s thesis [47]. In addition to using accelerometer

readings, Guse also investigated using the gyroscope, and he applied new techniques

to the domain, such as dynamic time-warping (DTW). Although, we do not apply

DTW, our proposed technique for sample-rate normalization would be effective here

because DTW requires constant sample rates. Future work would be to use collected

data to demonstrate similar biometric identifiers.

3In-space gesture movements involve moving the phone in space, and not neccesarily movements
caused by providing input on the device.
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Chapter 6

Conclusion

In this thesis, we demonstrate how the smartphone interaction layer can lead to

novel side channels that surreptitiously reveal secure user input. We classified two

side channels, an externally observable side channel and an internally observable side

channel. Both side channels are enabled by smartphone touchscreens: The fact that

we hold our phones in our hand and touch and gesture on the screen surface enable

these attacks. The result of this interaction both leaves forensic evidence on the touch

screen surface and shifts the phone in measurable ways.

As an externally observable side channel, we investigated smudge attacks: A side

channel that leverages forensic photographic evidence of oily residues remaining on

touchscreens post user input. We found that smudges are easily captured, and in

most lighting and photographic setups, a smudge may reveal a wealth of information

to identify, or greatly reduce the search space for, a user’s password pattern. Addi-

tionally, we identified a number of key design issues of Android’s password pattern

that render it particularly vulnerable to attacks like this, such as the properties of

pattern smudges that help distinguish it from general application usage.

This thesis also investigates sensor-based side channels as an example of an inter-

nally observable side channel. Here, the attacker installs an application with access to

the accelerometer sensor, and is able to infer user input surreptitiously by analyzing
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the sensor readings. We collected a large smartphone sensor-reading data set, consist-

ing of 24 users entering a set of 50 PINs and 50 password patterns. Using this data,

We developed novel features first applied in this domain and demonstrated that there

is sufficient information to infer user input from sensor readings. Although, there is

evidence to suggest that the attacker can build sensor-reading dictionaries, there is

significant challenges with respect to movement noise (i.e., input provided while the

user is in motion, such as walking) and consistency across users and devices.

There are many areas of future pursuit based on the results herein. For exam-

ple, it would be beneficial to understand how to combine sensor readings from both

the gyroscopic and accelerometer sensor (or more sensors) to construct richer models

for inferring human input. While these models may be originally developed to sur-

reptitiously infer user input, this line of research could also lead to advancements in

human computer interaction that encourage cleaner interaction layers. However, such

extensions, should be carefully vetted for potential security issues and information

leakage.

Another area of future research that would greatly benefit the computer science

community would be studies of the human factors for password pattern selection.

The password pattern may be the first graphical password with wide deployment and

acceptance, but we understand very little about how patterns are selected. These

results would lead to the construction of pattern dictionaries, as similar studies have

led to password dictionaries; however, these results would also provide guidelines that

can assist users in selecting more secure patterns.

Additionally, research into mitigating sensor-based side channels at a information-

flow and security policy level is an area of future exploration. Although proposals

in the literature could be adapted to mitigate this attack, the implications of such

implementations, such as how a security policy affects benign applications, should be

investigated. Of course, additional research for end-to-end implementations of the

side channels investigated in this thesis is a clear next step as well.

Finally, the results of this thesis speak to security analysis of new devices with new
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interaction layers. We argue that the security implications of the smartphone interface

must also be carefully considered, as these results show. For example, the Android

password pattern may seem like a reasonable security mechanisms to secure the phone,

but its heighten susceptibility to both smudge and sensor-base attacks render it much

less secure than one would intuitively think. The security of new devices must be

consider in its entirety, through hardware, software, and user interface. Information

leakage at any layer is a threat, and while previous work has investigated the hardware

and software layers, this thesis clearly shows that the user interface layer also needs

careful consideration.
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Appendix

PINs and Password Patterns used in Chapter 4

PINs

8671 4624 8343 6603 7026 5178 3251 2358 4458 8849 3031 6626 1629 0650 5975 1777

1382 1709 2766 7495 2087 5181 9422 6848 5616 6993 5945 9663 2996 7226 9590 6350

4915 4482 6407 4457 7337 4448 7050 1192 1407 4675 6068 0717 9051 5946 5763 5365

7238 2021

Patterns

Below are the patterns used in the experiment. Refer to Figure 2.4 for the ordering

of the contact points.

5284693 6749231 2358417 58967 8695471 524638 524176839 7586923 3615294 594617

54982317 5879143 98652471 6392578 5836749 874563 12589436 6359471 58764239

35426 2547 8572639 1542 876529 36528914 695281 586241793 3695741 621458 749583

2584196 126594 769251 5872963 62584913 853476 125347 9658237 65491 3684179

74852196 578416 325914 564893217 7832169 14587 231548 32584697 51263 1523496
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