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ABSTRACT
Android’s graphical authentication mechanism requires users to un-
lock their devices by “drawing” a pattern that connects a sequence
of contact points arranged in a 3x3 grid. Prior studies demonstrated
that human-generated 3x3 patterns are weak (CCS’13); large por-
tions can be trivially guessed with sufficient training. An obvious
solution would be to increase the grid size to increase the complex-
ity of chosen patterns. In this paper we ask the question: Does
increasing the grid size increase the security of human-generated
patterns? We conducted two large studies to answer this ques-
tion, and our analysis shows that for both 3x3 and 4x4 patterns,
there is a high incidence of repeated patterns and symmetric pairs
(patterns that derive from others based on a sequence of flips and
rotations), and many 4x4 patterns are expanded versions of 3x3
patterns. Leveraging this information, we developed an advanced
guessing algorithm and used it to quantified the strength of the pat-
terns using the partial guessing entropy. We find that guessing the
first 20% (G̃0.2) of patterns for both 3x3 and 4x4 can be done as
efficiently as guessing a random 2-digit PIN. While guessing larger
portions of 4x4 patterns (G̃0.5) requires 2-bits more entropy than
guessing the same ratio of 3x3 patterns, it remains on the order of
cracking random 3-digit PINs. Of the patterns tested, our guess-
ing algorithm successful cracks 15% of 3x3 patterns within 20
guesses (a typical phone lockout) and 19% of 4x4 patterns within
20 guesses; however, after 50,000 guesses, we correctly guess 95.9%
of 3x3 patterns but only 66.7% of 4x4 patterns. While there may be
some benefit to expanding the grid size to 4x4, we argue the major-
ity of patterns chosen by users will remain trivially guessable and
insecure against broad guessing attacks.

1. INTRODUCTION
As an alternative to text-based passwords, graphical passwords [7]

enable users to authenticate through a process related to image se-
lection or sketch/gesture matching. The motivation for graphical
passwords is part psychological [19, 26] — humans are bad at com-
mitting sequences of alphanumeric characters to memory and pre-
cisely recalling that information, but better at remembering and re-
calling graphical stimuli — and part a desire for increased com-
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plexity as compared to user choice of easily guessed text-based
passwords [13, 16, 17].

While many graphical password systems have been proposed
(see [7] for a comprehensive survey), with the advent of mobile-
and touchscreen-computing, it is not until recently that graphical
passwords have become widespread. In particular, Android’s graph-
ical authentication mechanism, the password pattern or pattern un-
lock scheme, is perhaps the most widely used graphical password
system to date. This is attributed in part to the fact that the graph-
ical password system comes standard on all Android devices, and
that Android is the most widely used mobile Operating System.

Based on earlier graphical systems (e.g., Pass-Go [22]), in or-
der to authenticate, Android users are required to “draw” a pattern
that connects a sub-set of four or more contact points arranged in
a 3x3 grid. If the pre-selected pattern is entered accurately, en-
try to the device is granted. The Android password pattern sys-
tem has been studied in many contexts, including attacks on pat-
terns [5, 6], security perceptions [4, 11], prevalence of use [25],
and user choice [1, 2, 18, 21, 23, 14]. Through these analyses, it
has been shown that, despite there being 389,112 possible patterns,
users select patterns from a much smaller set, and that the majority
of these user-selected patterns can be easily guessed with roughly
the same difficulty as guessing random 3-digit PINs [23]. The ad-
dition of password meters [18, 21] and strength scores [1] can in-
crease the complexity of human choice; however, the guessability
is still higher than desired [18] thereby impacting levels of security.

One intuitive and somewhat obvious strategy to encourage users
to select stronger password patterns is to increase the grid size.
In custom modifications to Android, such as CyanogenMod [10],
users are allowed to select from grid sizes ranging from 3x3 up
to 12x12. An obvious question is then: Does increasing the grid
size increase the security of human-generated patterns? Increas-
ing the grid size significantly increases the total available patterns
by many orders of magnitude — a 4x4 grid has 4,350,069,823,024
possible patterns — so one would expect that the complexity of hu-
man generated 4x4 patterns to be substantially greater than that of
3x3 patterns.

To address this question, we conducted two large, Institution
Review Board (IRB) approved studies to collect human-generated
3x3 and 4x4 patterns. First, we designed and administered an in-
lab, pen-and-paper study that follows the methodology of prior
work [23] requiring users to generate 3x3 and 4x4 patterns in an ad-
versarial situation. Participants are asked to first select patterns of
their own (so called “defensive patterns”), and they are then asked
to generate more patterns (so called “offensive patterns”) in an at-
tempt to guess the defensive patterns of others. Second, we de-
veloped an online survey that works in the browser where users
can optionally self-report their own personal patterns using their



own mobile devices. The online survey was administered on Ama-
zon Mechanical Turk, and attracted 750 respondents, of which 440
self-reported their 3x3 patterns. The in-lab survey attracted 80 par-
ticipants who provided 494 valid 3x3 patterns and 504 valid 4x4
patterns.

Analyzing the data sets, we find that there is a general consis-
tency, such as in start/end points and pattern length, between the
3x3 patterns collected online and in-lab, which suggests that the
in-lab study of 4x4 patterns provides a reasonable proxy for pat-
terns which users may actually choose in the wild. Further analysis
shows that across all the data sets, users are inclined to choose ei-
ther the same patterns as others or a symmetric pair of other users’
patterns (that is, a pattern that can be derived through some combi-
nation of flips or rotations). In total, 76.4%, 80.5%, and 40.48% of
self-reported 3x3, pen-and-paper 3x3, and pen-and-paper 4x4 pat-
terns, respectively, are either repeated or have a symmetric pair in
the data set. Further, we find that 32.9% of 4x4 patterns are sim-
ple embeddings of 3x3 patterns that are mapped into the 4x4 grid
space.

Using these observations, we developed, to the best of our knowl-
edge, the most accurate pattern guessing algorithm to date and use
it to estimate the partial guessing entropy [8] of the collected pat-
terns which considers an attacker that wishes to crack some fraction
of the patterns (also referred to as α-guesswork where α is the tar-
get fraction to guess). To verify the efficacy of the guesser, we
reserved the self-reported 3x3 patterns as a test set, and trained the
guesser using a cross-fold validation of the 3x3 and 4x4 pen-and-
paper patterns.

During the training phase, we find that the guessability of 3x3
pen-and-paper patterns is similar to that in prior work [23] at α =
0.5, but, using our guesser, cracking the first 20% (G̃0.2) of pat-
terns requires many fewer guesses than prior work and shows that
it requires only slightly more work than guessing random 2-digit
PINs. Surprisingly, the guess work required to crack the first 20%
of pen-and-paper 4x4 patterns is less than cracking the same por-
tion of 3x3 patterns, on the order of guessing random 2-digit PINs.
However, guessing the first 50% (G̃0.5) of the 4x4 patterns is 2-bits
of entropy higher than that of cracking a 3x3 pattern.

When applying the guesser to the reserved test set of self-reported
patterns and training on the pen-paper 3x3 patterns, we find that the
guessing rate is consistent with the cross-fold validations, and re-
quires only slightly more work (0.5 bits) to guess the first 50% of
the self-reported data. In total, after 50,000 guesses, our guesser
can crack 95.9%, 97.2%, and 66.7% of the self-reported 3x3, pen-
and-paper 3x3, and pen-and-paper 4x4 patterns, respectively. Inter-
estingly, if we consider the online attack scenario where an attacker
only has a limited number of attempts before a lockout, typically
20, 15% of the self reported 3x3, 16.7% of pen-and-paper 3x3,
and 19.9% of the pen-and-paper 4x4 patterns would be success-
fully guessed.

To summarize, the contributions of this paper include:

• The first analysis of newly collected of Android password
patterns using grid sizes larger than 3x3 (i.e. using a 4x4
grid);

• The first analysis of self-reported 3x3 patterns compared to
in-lab studies;

• Confirming the analysis and efficacy of the data collection
methodology of prior work;

• New observations on the prevalence of repetition, symmetric-
pairing, and embedding of human-generated 3x3 and 4x4
patterns;

Figure 1: The available next contact points from the contact point
in the upper left for 3x3 and 4x4 grids

• Advancement in guessing strategies for cracking both 3x3
and 4x4 patterns;

• Analysis and comparison of the guessability of 3x3 and 4x4
patterns.

We find that there may be some benefits to increasing the grid-size
from 3x3 to 4x4. For example, increasing the grid size does not
strongly affect memorability and does decrease the likelihood of
naive guessing. However, the low complexity and general guess-
ability of human-generated patterns remain. We conjecture that
this will likely be true for even larger grid sizes beyond 4x4. As
the grid space becomes more dense with more contact points, the
ease of entry for more complex, less guessable, patterns is reduced
due to the increased likelihood of accidentally interacting with the
contact points. As such, we should expect that the guessability rates
for human-generated patterns on larger grid sizes will suffer from
the same problems as 4x4 patterns, and have similar, easier than
desired, guessability rates.

2. RELATED WORK AND BACKGROUND
As a response to the tradeoff between security and memorability

of alphanumeric paswords and PINs, the community has developed
a wide variety of graphical password schemes (described in more
detail by Biddle et. al [7]) in an attempt to provide increased com-
plexity and increased memorability from graphical stimuli. The
Android graphical password pattern is an example of such a scheme
and is based on draw-metric graphical passwords system and is re-
lated to systems like Draw-A-Secret [12], PassPoints [27], Pass-
Go [22] and PassShapes [26], to name a few.

The Android graphical password pattern, as a variant of these
draw-metric schemes, presents the user with a grid of 3x3 contact
points on which the password pattern is “drawn.” If the pattern is
successfully recreated, entry to the device is granted. The drawing
of a pattern is constrained such that (1) a pattern must contain at
least 4 contact points, (2) a contact point may only be used once,
(3) a pattern must be entered without lifting, and (4) a user may not
avoid a previously un-selected contact point. The same rules apply
for both the 3x3 and 4x4 grid spaces. In Figure 1, an example of the
allowable strokes originating from the upper left corner are shown
for both grid spaces. Note that once a contact point is selected, a
user may trace over it to get to another contact point, but the point
is only considered selected once.

It is well documented through brute force enumeration [5] that
there are 389,112 possible 3x3 patterns. We have performed a simi-
lar calculation for 4x4 patterns (requiring a number of optimization
techniques) to determine that there are 4,350,069,823,024 possi-
ble 4x4 patterns, which is approximately 242 possible patterns as
compared to approximately 218 3x3 patterns. As another point of
reference, the number of possible 4x4 patterns is similar in mag-
nitude as randomly selected 7-character password that could use
all upper-case characters (26), lower-case characters (26), numer-
ics (10), special symbols (32), and spaces (956 ∼ 246), while the



number of possible 3x3 patterns is more similar in magnitude of a
3-character password (954 ∼ 219).

The Android pattern has been well studied by researchers. Fore-
most, von Zezchwitz et. al conducted a study of locking strategies
on Android devices [25] and found that PINs outperformed pattern
lock when comparing input speed and error rates despite the fact
that patterns remain very popular among Android users. The num-
ber of patterns available to users on grids has been calculated on
numerous occasions [5, 23, 14]. Attacks on the patterns have also
been proposed. These include, for example, smudge attacks [5]
which use the oily-residues of prior entries to determine the pattern
as well as attacks that leverage the on-board motion sensors to de-
termine pattern input [6]. The ease of shoulder surfing attacks on
pattern entry has also been studied [24]. Furthermore, studies have
been undertaken examining unlocking behavior [11] and percep-
tions of security [4]. Findings suggest that participants considered
secure lock screens (e.g. Android unlock patterns) unnecessary in
24.1% of situations [11].

The earliest analysis of user-generated patterns was conducted
by Andriotis et. al [2]. Users were asked to provide one “easy”
and one “hard” pattern, in an in-lab setting. Follow-up work has
been conducted by Andriotis et. al [1], Song et. al [18], and Sun
et. al [21]. The researchers have all collected user-generated pat-
terns for the purpose of developing complexity measures and/or
password meters to increase security of user choices. While these
schemes do generally increase the complexity of user choice (by re-
quiring the user to select patterns with longer strokes or using more
contact points), the human-selected patterns are still relatively eas-
ily guessed as compared to random 4-digit PINs [21].

This paper is most similar to is a study by Uellenbeck et. al [23].
These researchers collected and analyzed the partial guessing en-
tropy [8] of a large corpus of user generated Android patterns. We
adopt much of the methodology of that study here. In particular,
we employ the same metrics for guessability, and we also adopt
(with minor modification) the primary data collection methodol-
ogy where users are asked to select patterns of their own and guess
the patterns that other users selected. Our pattern guesser is also
modeled after the guesser described by Uellenbeck et. al with
added focus to the likelihood measures (i.e., the Markov model
construction) and pattern repetitions/symmetries. We confirm the
primary findings of their study that in many situations the guess-
ability of Android patterns is as challenging as guessing random
3-digit PINs. We advance upon these findings by showing that in
many situations, and for 4x4 patterns, that the guessing challenge
is more similar to guessing random 2-digit PINs.

Finally, to the best of our knowledge, this is the first work to
study human-generated patterns for grid sizes beyond 3x3. While
Uellenbeck et. al. [23] did consider different layouts of the contact
point, e.g., in a circle, with the top left point removed, and ran-
domly aligned, the number of contacts were always equal to or less
than nine. In the research described in this paper, we consider the
4x4 grid space, with a total of 16 contact points.

3. METHODOLOGY
In this section, we describe the data collection methodology.

Note that we use two primary data collection methods: an in-lab/pen-
and-paper study (termed pen-and-paper) and an online/self-reporting
study (termed self-report). For the pen-and-paper study, we model
the methodology of Uellenbeck et. al [23], and we use this method
to collect both 3x3 and 4x4 patterns. For the self-report study, we
developed a survey that functions in the browser and administered
it on Amazon Mechanical Turk. The survey is designed to model
the pattern entry of Android within the browser so that participants

can enter patterns on their own mobile device without having to
install any specialized applications. We use the self-reported data
for two purposes: (1) to compare against the pen-and-paper data to
establish the efficacy of the pen-and-paper methodology; and (2)
as a reserved test set to measure the performance of the guessing
algorithm.

All the protocols used herein were reviewed and approved by our
IRB, meet appropriate ethical standards, and incur minimal risk to
the participants. The limitations of our methodology are discussed
following their description.

3.1 Study 1: Pen-and-Paper
To encourage participants to generate realistic patterns during

the study, we employed the adversarial methodology described by
Uellenbeck et. al [23]. This method encourages users to generate
patterns which they believe others will use (and thus would prob-
ably use themselves). The crux of the adversarial method requires
users to first select patterns as their own (so called defensive pat-
terns) and are rewarded for generating additional patterns that oth-
ers selected (so called offensive patterns). Our protocol differs from
Uellenbeck et. al’s, as we ask participants to generate 3 defensive
patterns and 10 offensive patterns rather than one in each category.
We also ask participants to attempt to recall their defensive patterns
at the end of the survey to gauge the memorability of 4x4 patterns
compared to 3x3 patterns.

Conducted using pen-and-paper, participants are asked to draw
patterns using marker/pen on grids printed on paper handouts. While
drawing their pattern, participants follow the same rules as they
would for drawing patterns on a mobile device by placing the mark-
er/pen at the starting contact point and drawing the pattern without
lifting. To differentiate the start point of the pattern from the end
point, participants are asked to circle the start point on the grid. The
specifics of the protocol and recruitment are described below.

Protocol. Participants are divided into focus groups where, within
each group, a group leader (a researcher) would direct participants
through the procedures. Rewards are provided to the participants,
in the form of edible treats (e.g., chocolate), for the ability to guess
others’ patterns and recall their own patterns. The fact that par-
ticipants would be asked to recall their own passwords, is withheld
until the end of the focus group; however, participants are informed
up front about rewards for guessing others’ patterns. The protocol
proceeds in five phases for both 3x3 and 4x4 pattern study groups:
instructions, selection, guessing, survey, and recall.

The purpose of the instructional phase is to inform the partici-
pants of the procedures of the study. For consistency, group leaders
are provided with an oral script and participants received handouts
with instructions. The handouts differ between groups in regard
to the grid sizes only (i.e., 3x3 vs 4x4), all other instructions re-
mained the same. The handout also contained information about
what makes a pattern valid and what makes a pattern invalid, which
is also described aloud to participants.

During the selection phase, participants are instructed to select
three patterns to be their own defensive patterns. There are explicit
oral and written instructions (in bold and colored red) regarding the
criteria which selected patterns should follow:

Choose passwords that are easy for you to recall but
hard for others to guess.

Once the three passwords are selected, the paper-sheet on which
they are drawn is collected and reserved.

Next, in the guessing phase, participants are asked to make ten
guesses (offensive patterns) of what they think other participants
may have selected as their patterns. Participants may guess their



own pattern, but rewards are only provided if the participants cor-
rectly guesses other participants’ patterns. Again, once completed,
the paper-sheets are collected with all the offensive patterns.

The survey phase that follows serves two purposes. First, it is
used to collect standard demographic information about the partic-
ipants, such as age and gender, but it also used to keep the partic-
ipants occupied while the group leaders matches the guesses (of-
fensive patterns) to the selected patterns (defensive patterns). Once
the matching and survey is completed, the results are revealed and
rewards distributed.

Finally, the group leader reveals to the participants that they can
earn additional rewards if they are able to recall their own initial
three patterns (occurring approximately 15-20 minutes after initial
selection). A final handout is provided to the participants on which
they attempt to draw their originally selected patterns. A reward is
provided for each properly and accurately recalled pattern. Once
the survey is complete, the group leader allows the participants to
view all the patterns selected and converse with each other. During
the survey, conversing was not allowed.

Recruitment and Collection. We conducted the study using 10
focus groups during a period of 6 weeks. In total 80 individuals par-
ticipated, and the group sizes varied between 8 and 20. Two-thirds
(48) of the participants were male and one-third (24) were female.
Recruitment was conducted at the institutions of the authors, and
the ages of the participants varied between 18 and 40 years. We
collected 494 3x3 patterns (380 offensive and 114 defensive) and
504 4x4 patterns (385 offensive and 119 defensive). There were a
small number of patterns that were rejected from analysis as they
did not follow the pattern generation rule (see Section 2), and some
participants failed to provide all three defensive or all ten offensive
patterns.

3.2 Study 2: Self-Reported Patterns
The self-reporting study is used to augment the data collected

during the pen-and-paper survey. Prior work examining text-based
passwords has shown that self-reported statistics model actual user
behavior [20, 28]. As such, we designed an on-line/in-browser sur-
vey written in HTML5 and Javascript that is able to mimic the pat-
tern entry system for Android. The survey was administered on
Amazon Mechanical Turk. Participants were compensated $0.75
for completing the study. To encourage participants to provide their
real patterns, we allowed participants to opt-out of reporting their
pattern during the survey and instead report statistics of their pat-
tern (such as start point and common tri-grams in their pattern). In
total, 750 individuals participated, of those, 440 self reported their
3x3 patterns. Of the 440, 251 were male and 189 were female,
ranging in age between from 18 to 55+.

To ensure honesty among the participants, we added two atten-
tion tests. First, participants must enter their pattern (or statistics
about their pattern) twice, once at the start of the survey and once at
the end. If these varied, the participant is excluded (but not rejected
in Amazon Mechanical Turk). Second, we required participants to
answer a truth-based question at the end of the survey along the
lines of asking “Did you provide honest answers to this survey?” If
the participant failed to check “yes” then they are excluded (but not
rejected). Finally, we also incorporated a Captcha into the survey
to ensure the process could not be easily automated.

3.3 Limitations
The foremost limitation of the methodology is the use of pen-

and-paper to collect patterns. Clearly, patterns are not typically
entered using pen-and-paper but instead on mobile devices using
touchscreens. We compensate for this limitation by using the self-

reported data set to verify the properties of the pen-and-paper data.
As we will show, the basic statistics of the two data sets are very
similar, and we argue that pen-and-paper model offers a reason-
able substitute for real, in-the-wild data, especially for 4x4 patterns
which are not commonly used.

There are also reasonable limitations regarding the veracity of
the self-reported data set. We argue that this data probably better
represents patterns as they are actually seen in the wild than other
reported data sets [2, 21, 23], and there are a number of factors to
suggest this.

First, participants provided patterns on their own mobile devices
which are likely locked with the pattern provided. We argue that
there is likely a reflex in this setting to just enter the real pattern
much like there is a reflex to type your password in a password box
if one comes up on the screen [9]. Second, there were very low rates
of failure among the attention tests — two participants were ex-
cluded for not-matching their patterns and three were excluded for
not indicating that they told the truth — suggesting that participants
likely provided attentive and honest responses. Third, participants
could optionally not enter their password, so those that did were
more likely to reveal their real password. This, however, may sug-
gest that the revealed passwords may be simpler/easier/less-secure
than those that were not revealed. An analysis of the self-reported
statistics from the self-reported patterns are consistent with respect
to length, start/end point, and common sub-sections, which sug-
gests that participants provided honest answers.

Another limitation is that the pen-and-paper 4x4 patterns cannot
be cross-referenced to another study, such as a self-reporting survey
like the 3x3 patterns were, due to the simple fact that 4x4 patterns
are not typically used except on specially modified Android devices
(e.g., CyanogenMod). As such, we argue that just as the data from
the pen-and-paper 3x3 patterns is a good proximate for real 3x3
patterns it is likely that the pen-and-paper 4x4 patterns are a good
proximate for how users would choose real 4x4 patterns if they
were used widely.

Finally, there is further limitations in the pen-and-paper data col-
lection methodology with regarding to participant priming and en-
try exhaustion. As for potential issues with priming, indicating to
participants that they must first choose patterns that others will
guess may prime them towards choosing harder passwords than
they would realistically use; however, the fact that participants then
in turn assume others choose weaker passwords than themselves,
as evidenced in the results (see Section 5), provides some balance
with respect to password strength in the data when looking at a
combination of both defensive and offensive patterns.

Regarding entry exhaustion, a potential limitation in the data
may occur when participants are asked to generate many patterns
in one sitting (ten in a row for offensive patterns, and thirteen to-
tal considering the defensive as well) may have led participants to
over simplify (or over complicate) their guesses, which would lead
to weaker patterns overall and for offensive patterns in particular.
The results suggest that this impact was small. When comparing
the guessability of offensive patterns to those self-reported, where a
participant provided just a single pattern, we find that self-reported
patterns are actually more easily guessed as compared to the of-
fensive patterns where ten patterns must be provided in one burst.
This suggests that overall, participants from pen-and-paper surveys
likely provide realistic patterns with respect to guessability features
as would be used in the wild.

4. DATA CHARACTERIZATION
Before proceeding to the guessability measures, we first wish

to provide some characterization of the data that will inform our
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Figure 2: The distribution of length in the data sets.
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Figure 3: The distribution of stroke-lengths in the data set

guessing algorithm. Foremost, we look at basic statistics of the pat-
terns, such as their length, start/end points, common sub-sections,
and the most common patterns. We will also present analysis of the
frequency of patterns repetitions and symmetries, and the embed-
ding of 3x3 patterns into 4x4 patterns. Finally, we provide analysis
of the memorability and human-powered guessability of patterns,
such as how common it was for 3x3 and 4x4 patterns to be both
recalled and compromised by other participants.

4.1 Basic Features
Length. We first consider the most basic feature of the patterns,
the length of the pattern. Figure 2 presents the results of the length
analysis — the measure of the total number of contact points used
— and for the pen-and-paper 3x3 patterns and self-report 3x3 pat-
terns collected, the distributions of pattern lengths are very similar.
As 4x4 patterns have more contact points, the lengths are longer
overall.

Additionally, we were interested in the stroke-length (or dis-
tance [3]) which has been shown to correlate with perception of
security [4]. The stroke length is calculated using the Cartesian dis-
tance of each line segment of the pattern where the contact points
are labeled with (x, y) values. For patterns drawn on 3x3 and 4x4
grids, we labeled the contact point in the upper left as (0, 0) and the
one in the lower right (2, 2) or (3, 3) depending on the grid size.
Calculating the stroke distance of the patterns resulted in the dis-
tribution presented in Figure 3. Again, for pen-and-paper 3x3 and
self-reported 3x3 patterns, the distributions are very similar, and for
4x4 patterns, with more points, we expect the stroke length to be
longer, covering the entirety of the grid.

To draw a better comparison between 3x3 and 4x4 patterns, we
normalized the two length measures. To normalize the length, we
divided the number of used contact points by the total available
contact points. To normalize the stroke-length, we mapped the 3x3
and 4x4 grids into a Cartesian space of size 1x1, where the upper
left contact remained (0, 0) but the lower right contact point was
(1, 1) for both 3x3 and 4x4 patterns. These results are presented
in Table 1; interestingly, when normalized, the length of 4x4 pat-
terns are shorter overall and do not have substantially longer stroke
lengths. This furthers the argument that the selected 4x4 patterns
are very similar to embedded 3x3 patterns in the 4x4 space, that is
4x4 patterns have the same shape/structure as 3x3 patterns.

Start and End Conditions. Results relating to start and end

Length Norm. Length Stroke Length Norm. Stroke Length
Self-Report 3x3 6.0 [5:7] 0.7 [0.6:0.8] 5.8 [4.0:7.0] 2.9 [2:3.5]
Pen-Paper 3x3 (All) 6.3 [5:7] 0.7 [0.6:0.8] 5.9 [4.1:7.4] 2.9 [2.2:3.7]
Pen-Paper 3x3 (Off.) 6.3 [5:8] 0.7 [0.6:0.9] 5.9 [4.3:7.7] 3.0 [2.2:3.8]
Pen-Paper 3x3 (Def.) 6.0 [5:7] 0.7 [0.6:0.8] 6.0 [4.8:7.0] 3.0 [2.4:3.5]
Pen-Paper 4x4 (All) 9.6 [7:12] 0.6 [0.4:0.8] 9.5 [6.8:11.4] 3.2 [2.3:3.8]
Pen-Paper 4x4 (Off.) 9.8 [7:12] 0.6 [0.4:0.8] 9.6 [7.0:11.5] 3.2 [2.3:3.8]
Pen-Paper 4x4 (Def.) 8.8 [6:11] 0.6 [0.4:0.7] 9.0 [6.0:11.0] 3.0 [2.0:3.7]

Table 1: Statistics of the length measures (mean [q1:q3]): Norm.
Length calculated by dividing by total available points, Norm.
Stroke Length calculated by mapping the 3x3 and 4x4 grid on a
Cartesian plane 1.0x1.0

points are presented in Figure 4. Unsurprisingly, in all the data
sets, the most common start point is the contact point in the up-
per left corner, which has been reported in prior studies [1, 2, 14,
18, 21, 23]. We identified that this trend also continues for 4x4
patterns, and perhaps is even more prevalent (37.5%) considering
the increase in the total number of start points. Again, as reported
in prior studies, patterns typically end in the bottom right contact
point, and this continues to be true for all the data sets.

4.2 Pattern Repetitions and Symmetries
Common Sub-Sequences. We wish to look at common sub-
sequences of patterns, namely tri-grams as these have been shown
to perform best when generating likely patterns for guessing [23].
Figure 5 displays the most common tri-grams (sequences of 3 or
more connected points) for all the data sets, and additionally the
top quad-grams for pen-paper 4x4 patterns. As shown, the most
common grams appear frequently, nearly twice as many as the 12-
th most common. Another interesting property of the common sub-
sequences is the prevalence of sub-sequences along the exterior of
the grid space, a property that persists in the 4x4 data. We will
use the distributions of tri-gram as a likelihood measure for pat-
terns, both 3x3 and 4x4, when developing the Markov model for
the guesser.

Repetitions. An important observation leveraged in our guesser is
that the prevalence of repeated patterns in the data set is quite high.
Figure 6 shows the top 5 most frequently occurring patterns in each
of the data sets. Note that the most frequent selected pattern appears
a lot; roughly, 3% of the data set is the most frequently occurring
pattern. Figure 7 shows the distribution of repeated patterns as a
cumulative fraction graph. All the data sets have a high occurrence
of patterns that repeat, and, more strikingly, roughly 20% of the
patterns in all data sets repeat at least 4 times. Table 2 provides
summary statistics of this feature and those described below.

Symmetries. Further analysis of the data shows that while a large
portion of each of the data sets is repetitive, there also exist many
symmetric pairs. We define a symmetric pair as two patterns that
can be transformed into the other through some sequence of flips,
rotations, or reversals. A repeated pair, then, is also a symmetric
pair, and when including all symmetric pairs, we find that 80% of
the pen-and-paper 3x3 patterns and 76% of the self-reported 3x3
patterns have symmetric pairs. Only 40% of the 4x4 pen-and-paper
patterns have symmetric pairs, and, while still a large fraction, there
are other properties of 4x4 patterns that can be leveraged in the
guesser. Figure 8 shows the distribution of symmetric pairs in the
data set as a cumulative fraction graph.

Embeds. As can be observed in Figure 6 for the most frequent
patterns, some of the 4x4 patterns are just enlarged 3x3 patterns,
such as the ’Z’ or ’L’ shaped patterns. We describe this as a em-
bedding of a 3x3 pattern into a 4x4 grid space. There exist 16
possible embedding for every 3x3 pattern corresponding to the 16
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(a) Self-Report 3x3

Start End

(b) Pen-Paper 3x3
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(c) Pen-Paper 4x4

Figure 4: Frequency of Pattern Start and End Points (in percent)
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(a) Self-Report 3x3

Freq=107 Freq=92 Freq=86 Freq=85 Freq=79 Freq=76 Freq=71 Freq=70 Freq=67 Freq=62 Freq=50 Freq=50

(b) Pen-Paper 3x3

Freq=100 Freq=96 Freq=96 Freq=92 Freq=91 Freq=87 Freq=87 Freq=86 Freq=78 Freq=75 Freq=68 Freq=68

(c) Pen-Paper 4x4 (tri-grams)

Freq=84 Freq=77 Freq=77 Freq=72 Freq=72 Freq=64 Freq=63 Freq=58 Freq=56 Freq=50 Freq=48 Freq=47

(d) Pen-Paper 4x4 (quad-grams)

Figure 5: Top 12 Occuring Tri-grams for 3x3/4x4 and Quad-grams for 4x4

ways of removing one row and one column from a 4x4 grid to form
a 3x3 sub-grid. For each sub-grid, we consider a mapping of the
3x3 pattern adding intermediate points as necessary to form a valid
4x4 pattern. Only unique embeddings are considered. We analyzed
the pen-and-paper 3x3 data embedded into the 4x4 grid space and
found that nearly a third (32.9%) of 4x4 patterns are just mappings
of 3x3 patterns. We apply this fact in our guessing algorithm to
train the guesser on likely 4x4 patterns.

4.3 Memorability and Naive Compromises
We have an opportunity to measure the memorability and “human-

powered guessability” (so called naive compromises) of 3x3 and
4x4 patterns collected during the pen-and-paper survey. Recall
from the methodology that participants were asked to select three
patterns of their own (defensive patterns) and also guess ten pat-
terns of others (offensive patterns). Additionally, participants were
asked to recall their three defensive patterns at the end of the survey,
roughly 15-20 minutes past when those patterns were selected.

Naive Compromises. While rewards were only provided to par-
ticipants who guess patterns within their study group, we can look
across study groups and get a sense of the naive, human-powered
guessability of patterns. For 3x3 patterns, 39/114 (or 34%) of the
defensive patterns appear as offensive patterns. For 4x4 patterns,
16/119 (or 13%) of the defensive patterns appear as offensive pat-
terns. Note these numbers are slightly inflated due to repetition of

Size Repetitions Symmetries Embedding
Self-Report 3x3 440 203 (46.1%) 336 (76.36%) n/a
Pen-Paper 3x3 (All) 491 245 (49.9%) 398 (81.1%) n/a
Pen-Paper 3x3 (Off.) 378 187 (48.3%) 309 (79.8%) n/a
Pen-Paper 3x3 (Def.) 113 16 (14%) 54 (47%) n/a
Pen-Paper 4x4 (All) 501 179 (35.7%) 204 (40.7%) 166 (33.1%)
Pen-Paper 4x4 (Off.) 382 156 (40.8%) 177 (46.3%) 142 (37.1%)
Pen-Paper 4x4 (Def.) 119 10 (8.4%) 10 (8.4%) 24 (20.1%)

Table 2: The Fraction of Repetitions, Symmetries, and Embedding
of 3x3 patterns in 4x4 patterns

patterns (a single guess can compromise multiple patterns). Still,
the rate of compromise for 3x3 patterns is more than twice as high
as that of 4x4, which suggests for human-powered, naive guessing
of patterns, 4x4 patterns are likely more secure against a typical
human adversary.

Recall Rates. The memorability of the patterns is estimated in
the recall rate of the defensive patterns at the end of the study. Both
3x3 and 4x4 patterns had similar recall rates: 54/114 (47%) of the
defensive 3x3 patterns and 50/120 (42%) defensive 4x4 patterns
could be recalled at the end of the survey. Combined with the lower
naive compromise rate of 4x4 patterns, this would suggest that there
would be some benefit to increasing the grid size: low impact on
memorability and an increased resilience to naive guessing. As we
will show in the next section, however, the true guessability of 4x4
patterns compared to 3x3 patterns is actually much closer when
using advanced techniques.



Freq=17 Freq=11 Freq=8 Freq=8 Freq=7

(a) Self-Report 3x3

Freq=11 Freq=9 Freq=9 Freq=8 Freq=7

(b) Pen-Paper 3x3

Freq=15 Freq=10 Freq=9 Freq=9 Freq=9

(c) Pen-Paper 4x4

Figure 6: Top 5 Most Frequently Occurring Patterns
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Figure 7: Cumulative fraction of patterns that repeat

��

����

����

����

����

����

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ���

�
�
�
�
��
���
�
��
��
�
���
�

���������������

�������������
�������������
���������������

Figure 8: Cumulative fraction of patterns that have symmetries

5. PATTERN GUESSABILITY
Our primary mechanism for quantifying the relative strength of

3x3 and 4x4 patterns is to measure the guessability by construct-
ing a guessing routine and measuring the rate of correctly guessed
patterns. We model our guessing algorithm on prior work [23]
with some advances in the likelihood measures and pattern gen-
eration techniques. We train the guesser to the pen-and-paper 3x3
and 4x4 patterns using a cross-fold validation and tune the perfor-
mance based on the partial guessing entropy [8], which measures
ability of the attacker to guess some fraction of the patterns. This is
a common technique employed in prior work [18, 23] and related
work on password strength [13, 16]. We verify the efficacy of the
guesser by finally applying it to the reserved test set (self-reported
3x3 patterns) with training from the pen-and-paper 3x3 patterns.

In the rest of this section, we first describe the likelihood mea-
sures and the guessing algorithm, followed by a description of the
partial guessing entropy metric. The section concludes with a pre-
sentation of the results.

5.1 Guessing Algorithm
We based our guessing routine on the one described by Uellen-

beck et. al [23] with limited modifications. The primary difference
between our and Uellenbeck et. al’s routine, is that we leverage

more of the properties of human-generated patterns during the ini-
tial guessing routine. As noted in the prior section, we observe that
human-generated patterns have high repetition rates as well as have
many symmetries, and we wish to guess those patterns earlier and
ranked by some likelihood score. Our likelihood measure is also
based on a tri-gram Markov model; however, we have advanced
this technique to better draw from the start and end conditions of
the patterns as well as the distribution of pattern lengths. Similar
to Uellenbeck et. al, we find that tri-grams work best for likelihood
measures.

Markov Model Likelihood Estimates. To compute the like-
lihood of a given pattern, we employ a standard Markov model
with probabilities estimated from the training set. Pattern transi-
tions, i.e., the connection of two contact points to form a segment
in the pattern, is modeled based on the likelihood of a transition
between two tri-grams. For example, the probability (0,1,2) transi-
tions to (1,2,3) is estimated based on occurrences of that transition
in the training set, but the probability (0,1,2) transitioning to (1,5,3)
would always be 0 because it is an impossible transition. Of course,
not all valid tri-grams transitions will occur in the training set, so
we apply the standard Laplance smoothing (or constant smoothing
with k = 1). As noted in prior work [23], the smoothing technique
has little to no effect on the results.

Additionally, we wish to take advantage of the start and end
points, e.g. that patterns begin in the upper left and end in the
lower right, beyond just the most common initial tri-grams (differ-
ing from [23]). To do that, we consider additional start and end
states in the transition matrix where (-1,-1,0) is the tri-gram for a
pattern starting at the 0th contact point, and (8,-1,-1) is the tri-gram
ending in the 8th contact point.

Finally, we want the likelihood measure to also account for the
likely length of the patterns. While Markov models are sufficient
for measuring transition likelihoods, they do not model the ex-
pected length. As such, we also multiply the probability of a tran-
sition sequence by the probability a pattern is that length, again,
estimated from the training set.

Formally, we define a pattern x of length n as the sequence

x = {x−2, x−1, x0, . . . , xn−1, xn, xn+1}

where, for i < 0 and i ≥ n, xi = −1 which represents a start/end
state so that we can properly capture the beginning and end proba-
bilities of a pattern. The probability of a given pattern P (x) is then
defined as

P (x) = P (l(x) = n) ·
n+1∏
i=0

P (xi|xi−1, xi−2) (1)

where l(x) is the length of the pattern not considering start and end
nodes. The formula encapsulates both the start and end state prob-
ability, as well as interior transitions, and the probability a pattern
is a given length. We use this likelihood estimate to rank patterns
during guessing, as well as generating likely patterns that have not
been seen previously in the training set.

Generating Likely Patterns. Additionally, it is necessary to use
the Markov model to generate patterns that were not encountered
in the training set. We do this by sampling from the conditional (or
transition) probability distributions associated withP (xi|xi−1, xi−2)
while also considering the possibility of a transition to an end state.
To do so, we need to calculate the probability of the next contact
point P (xi) using the following equation:

P (xi) =

{
P (xi|xi−1, xi−2) · P (l(x) ≥ i) if xi ≥ 0

P (xi|xi−1, xi−2) · P (l(x) = i− 1) if xi < 0



The probability P (xi|xi−1, xi−2) can be estimated from the train-
ing set using the same transition information obtained from the
likelihood measures. The probability P (l(x) > i) is defined as
1−

∑s2

l=0 P (l(x) = l) where s is the grid dimension (i.e, either 3
or 4 for 3x3 or 4x4 grids).

Another way to describe the use of the length probabilities in this
formula is that when generating a pattern, you must consider the
impact of a transition to a non-end state (xi ≥ 0) and a transition
to an end-state (xi < 0) with respect to the distribution of pattern
lengths. In the case where the transition is to a non-end state, we
must consider the probability that the pattern is longer than its cur-
rent length (P (l(x) ≥ i)). Conversely, if the transition is an end
state, then we must consider the probability that the pattern is this
length (P (l(x) = i − i). Recall, that l(x) considers the length of
the pattern without the start and end states. With a transition to an
end state, l(x) would equal i− 1 as xi < 0.

The pattern generation algorithm proceeds by first selecting x0
by sampling from the distribution P (x0) and continues to sample
for each next contact point using P (xi) until an end state is se-
lected. We further limited the generation routine to consider only
valid transitions when calculating the conditional probabilities; for
example, when considering transition to a contact point xi that was
previously selected but outside the scope of the conditional of xi−1

and xi−2, the probability of that transition should be zero.

Algorithm Description. The goal of the guessing algorithm is
to not only guess as many patterns as possible, but to also do so as
fast as possible. The order of the guesses directly affects the par-
tial guessing entropy. To ensure the best possible order of guesses,
the algorithm will train a Markov model from the training input and
generate a sequence of ranked guesses based on the likelihood mea-
sure with added preferences for patterns appearing in the training
set and symmetries/reversals of patterns from the training set.

The Markov model must first be trained to compute the likeli-
hood measures. The training of the model is based on using all
the training data to estimate the transition probabilities; addition-
ally, we include all unique symmetries and reversals not found in
the training data as part of the probability estimates for the Markov
model. The weighting of training input to unique symmetries is
two to one, that is, a pattern appearing in the input training data is
treated as occurring twice for each instance (including repetitions)
and the unique symmetries are considered occurring only once. We
do this to capture transitions that occur in symmetries, as symme-
tries are highly prevalent for human-generated patterns and should
be accounted for. Finally, Laplance smoothing is used to ensure no
zero probability transitions exist for valid transitions that do not ap-
pear in either the training or the unique symmetries of the training.

Once the training of the Markov model is complete, the first
stage of guessing commences. Motivated by the high occurrence
of repeated patterns in the data, it makes sense for the guessing al-
gorithm to first guess all unique patterns provided in the training
data, ranked in order of the number of repetitions in the training
data with ties broken by the likelihood measure from the Markov
model. The next stage of guessing attempts to leverage the high
rate of symmetries in the data. As such, we next guess all unique
symmetries of patterns that appear in the training set ranked in or-
der of the likelihood measure.

For a training set of 400 samples (as is the case for a five-fold
cross validation with 500 items), the initial guesses constitute the
first ∼ 1800 guesses for 3x3 patterns and the first ∼ 2900 guesses
4x4 patterns. The remaining guesses are generated by sampling
from the Markov model as described in the previous section. To
ensure that more likely patterns are guessed first from the gener-

ated patterns — the sampling routine does not guarantee that the
most likely patterns are generated in order — we first generate
enough patterns to ensure that sufficiently likely patterns are con-
sidered. All the generated patterns are then sorted based on the
likelihood measure. In our experiments, we generated enough pat-
terns to make 50,000 total guesses. Written in Python, the guessing
routine takes about two minutes to generate 50,000 guesses for 4x4
patterns.

5.2 Partial Guessing Entropy
To measure the performance of the guesser with respect to the

guessability of the data set, we use the partial guessing entropy [8]
which considers an attacker who is satisfied with guessing some
fraction of the passwords in the set. In this scenario, we are at-
tempting to quantify the strength of patterns people choose by con-
sidering an adversary that can perform guessing across all individ-
uals’ devices. We are concerned with how long it takes, as mea-
sured in number of guesses, to correctly guess some fraction of the
users devices where there does not exist any lockouts (e.g., after 20
guesses). The scenario of guessing without lockouts does not ex-
actly model the reality of guessing users’ unlock pattern in online
manner on physical devices; however, we can observe the fraction
of patterns guessed within 20 attempts, the lockout limit. More
so, allowing guesses beyond the first 20, enables us to quantify the
strength of patterns more generally using partial guessing entropy
and compare the strength of user generated 3x3 and 4x4 patterns as
well as to other reported results.

Partial guessing entropy is formalized by first letting α be the
fraction of passwords the attacker wishes to guess, then µα is the
minimum number of guesses required to guess N · α of the pass-
words where N is the number of passwords in the corpus. Let,

µα = min

{
i0

∣∣∣∣∣
i0∑
i=1

pi ≥ α

}
where pi is the probability of guessing the ith password. Let λµα =∑µα
i=1 pi be the fraction of passwords cracked after µα guesses.

The actually number of passwords cracks may be greater than α ·N
because passwords may repeat in the data set, e.g., two users have
the same password. The partial guessing entropy is then defined

Gα(X) = (1− λµα) · µα +

µα∑
i=1

i · pi

This can be expressed as bits of entropy using the following formu-
lation:

G̃α = lg

(
2 ·Gα(X)

λµα

− 1

)
+ lg

1

2− λµα

(2)

As described in [8], the term lg 1
2−λµα

is provided to ensure that
the metric is constant for uniform distributions as would be the
case if the guessing routine is using no information and guessing
randomly. The partial guessing entropy (in bits) for a uniform dis-
tribution is simply G̃α = lg(N).

In the context of measuring the partial guessing entropy for the
data sets we collected, we vary from this approach in the same two
ways as in [23]. First, the size of the sample set required to properly
estimate X to compute pi is beyond what we are able to collect.
The second reason is that we are concerned with the metrics asso-
ciated with a specific attack methodology that attempts to model
the optimal order for guessing patterns. To compensate, like prior
work [23], we define pi as the fraction of passwords cracked with
the ith guess of running the guessing algorithm.
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(a) Self-Report 3x3 Patterns
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(b) Pen-and-Paper 3x3 Patterns
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(c) Pen-and-Paper 4x4 Patterns

Figure 9: Guessing Entropy Estimates with and without Markov Likelihood Rankings
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(a) All patterns using the average of 10 runs of
a 5-fold cross-validation with 500 randomly se-
lected patterns and self-reported 3x3 patterns
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(b) Offensive patterns using the average of 10
runs of a 5-fold cross-validation with 100 ran-
domly selected patterns
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(c) Defensive patterns using the average of 10
runs of a 5-fold cross-validation with 100 pat-
terns

Figure 10: Guessing Entropy Estimates

5.3 Guessability Results
Training the Guesser. The first task is to tune the guesser using
the training data found in the pen-and-paper 3x3 and 4x4 data. To
do that, we conducted 10 runs of a randomized five-fold cross vali-
dation using 500 samples per run. Note that there are only 494 total
samples for pen-and-paper 3x3 patterns, so one fold was slightly
smaller; however, since we are concerned with the average across
10 runs with 5 validations per run, this effect is negligible. The
guesser was set to make 50,000 guessing attempts.

Through the training of the guesses, we attempted a number of
different orderings of guesses — some examples include, conduct-
ing a total ordering of all likely patterns using the likelihood mea-
sure and only using the pattern generator and then ordering — and
we found that the most effective guessing strategy is to always first
guess patterns found in the training set ordered by repetition and
likelihood, followed by the symmetries/reversals ordered by likeli-
hood, followed by the generated patterns, again, ordered by likeli-
hood.

For 4x4 pattern guessing, we additionally wanted to leverage the
embedding of 3x3 patterns into the 4x4 grid. To do so, we treated
3x3 embedded patterns as additional training for the Markov model
much like the symmetries were, and they were also treated as pre-
generated patterns to guess during the generation phase. Including
these covers the first∼ 7000 guesses for 4x4 and correctly guesses
60% of the 4x4 patterns, on average during the cross-validation.

We also found that the likelihood measure from the Markov model
is crucial to achieving efficient pattern guessing. Figure 9 presents
the fraction of patterns correctly guessed for each guess for each of
the data sets with and without the use of the Markov model to order
the guesses. Ordering the guesses using the Markov model vastly
improves the performance of the guesser.

In total, after 50,000 guesses, our guesser can crack 96.2% and
67.4% of pen-and-paper 3x3 and pen-and-paper 4x4 patterns, re-
spectively, and 16.7% and 19.9% of 3x3 and 4x4 patterns, respec-
tively, after 20 guessing attempts,i.e., the phone lockout point. When
considering only the defensive and offensive patterns, we ran cross-
fold validations with 100 samples due to the smaller size of the data

sets, and the guesser was still able to guess 94.5% and 88.5% of the
offensive and defensive 3x3 patterns respectively (12.5% and 4.0%
after 20 guesses). The guesser correctly guessed 61% of the 4x4 of-
fensive patterns and only 37% of the 4x4 defensive patterns (16.7%
and 3.2% after 20 guesses). Visuals of the guessing rate are found
in Figure 10. These results are further summarized in Table 3.

Testing the guesser. With the guesser well trained, it can be
applied to the reserved testing set which was withheld from the
prior analysis. The self-reported 3x3 patterns, as shown previously,
has many of the same properties as the pen-and-paper 3x3 patterns.
We wish to determine how easily these patterns can be guessed
when only training on the pen-and-paper 3x3 patterns.

Without entering the pattern generation phase, the guesser can
crack 70% of the self reported patterns with the first 2,256 guesses
using only the training input of the pen-and-paper 3x3 patterns. Us-
ing the Markov model to reach 50,000 guesses total, the guesser can
guess 96.3% of the self-reported 3x3 patterns. Within 20 guesses,
15% of the patterns are guessed. These results are presented in
Figure 10a and Table 3.

Partial Guessing Entropy. The partial guessing entropy for each
of the data sets, as well as references to related results [23, 18, 15],
is presented in Table 3 for α = 0.1, 0.2 and 0.5.

The partial guessing entropy for all the test data sets for guess-
ing the first 10% of the patterns (G̃0.1) is less than prior reported
entropy rates [23, 18]. Most interesting, the guessability of the
first 20% of the 4x4 patterns actually requires fewer guesses than
guessing the similar proportion of 3x3 patterns for both 3x3 data
sets. We believe this has to do with the fact that the most common
4x4 patterns are even more common than the most common 3x3
patterns (see Figure 6 for the most common 4x4 patterns); however
the least common 4x4 patterns are less common than the least com-
mon 3x3 patterns. For α = 0.5, the entropy is > 2 bits higher for
4x4 patterns compared to either of the 3x3 data sets.

When comparing the guessability of patterns to random 2-, 3-,
and 4-digit PINs, it becomes apparent that in some cases, such as
α = 0.1, 0.2, guessing patterns is as easy as guessing a random



Perc. Guessed Perc. Guessed
α = 0.1 α = 0.2 α = 0.5 Total with 20 attempts

Self-Reported 3x3 6.62 6.95 9.49 95.9% 15.0%
Pen-Paper 3x3 (all) 6.59 6.99 8.93 97.2% 16.7%
Pen-Paper 3x3 (Off.) 6.98 7.69 9.31 95.3% 12.5%
Pen-Paper 3x3 (Def.) 9.43 9.79 10.98 90.2% 4.0%
Pen-Paper 4x4 (all) 6.23 6.64 11.61 66.7% 19.9%
Pen-Paper 4x4 (Off.) 6.46 7.57 10.40 67.7% 16.7%
Pen-Paper 4x4 (Def.) 6.23 6.64 11.61 37.4% 3.2%
Uellenbeck et. al 3x3 (Off.) [23] 7.56 7.74 8.19
Uellenbeck et. al 3x3 (Def.) [23] 8.72 9.10 10.90
Song et. al 3x3 (w/ Meter) [18] 8.96 10.33 12.29
Song et. al 3x3 (w/o Meter) [18] 7.38 9.56 10.83
Random 3x3 Pattern (U389,112) 18.57 18.57 18.57
Random 4x4 Pattern (U4,350,069,823,024) 41.98 41.98 41.98
Random 6-dit PIN (U1,000,000) 19.93 19.93 19.93
Random 5-dit PIN (U100,000) 16.60 16.60 16.60
Random 4-dit PIN (U10,000) 13.29 13.29 13.29
Random 3-dit PIN (U1,000) 9.97 9.97 9.97
Random 2-dit PIN (U100) 6.64 6.64 6.64
Real Users’ 4-Digit PINs [18, 15] 5.19 7.04 10.08

Table 3: Partial Guessing Entropy Comparisons

selection of 2-digit PINs. Even in the hardest setting, guessing half
the data set (α = 0.5), guessing 3x3 patterns is easier than guessing
a random selection of 3-digit PINs and guessing 4x4 patterns is< 2
bits harder but much easier than guessing a random selection of 4-
digit PINs. Interestingly, the guessability of patterns seems to be
more in line with the difficulty of guessing real users 4-digit PINs
(last line of table) which is another common unlock mechanism on
mobile devices.

6. CONCLUSION
Like text-based passwords [13, 16, 17], we know that humans

choose non-complex/insecure/easily-guessable Android graphical-
unlock passwords [1, 2, 14, 18, 21, 23]. One obvious, and easy,
solution that could encourage users to increase the complexity of
chosen patterns is to increase the grid size from 3x3 to 4x4. To test
the veracity of this solution, we conducted two large user studies,
and found that the rate of repeated patterns for both 3x3 and 4x4
patterns is very high, as well as the rate of symmetric pairs. Further,
we found that many 4x4 patterns are simple embeddings of 3x3 pat-
terns. We then developed an advanced guessing algorithm to mea-
sure the guessability of 3x3 and 4x4 patterns, finding that 4x4 pat-
terns are just as easily guessed as 3x3 patterns in many situations.
As such, we believe that increasing the grid size will have minimal
impact overall on the security of human-generated patterns. At the
very least, for 4x4 patterns, we showed that while the overall num-
ber of guessed patterns is lower than 3x3, the guessability of the
common 4x4 patterns requires less guesswork. We conjecture that
increasing the grid size beyond 4x4 will not affect much change.
As the grid size is increased, the ease of entering more complex
patterns will be reduce as the number of contact points becomes
more dense. The probability of mis-entering a pattern will be too
high, which will likely encourage users to continue to choose easily
guessable patterns, perhaps even more guessable than 4x4 patterns.
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